
Colin OõFlynn

1

A LIGHTBULB WORM?
Details of the Philips Hue Smart Lighting Design

Colin OõFlynn ð August 1, 2016.

(Black Hat USA 2016 White Paper)

ABSTRACT

This whitepaper is designed to show some details of the Philips Hue system. It is not

designed to demonstrate any specific attack, but instead a chance to òpoke aroundó to see

what security features are present. It is designed to serve as a reference for those designing

similar systems, to give a n idea what attack surfaces might be exploited .

This analysis focuses on the embedded hardware itself. In particular , I look at the Bridge

1.0 (round), the Bridge 2.0 (square), the low -cost white light bulbs, and the BR30 color bulb.

The newer Bridge 2.0 m akes an interesting target for hardware hackers to use, as itõs

possible to obtain a root console (as discussed herein) allowing you to take control of this

device.

Having access to the root console al so allows more detailed analysis of the binaries present

on the bridge, which could lead to the discovery of other vulnerabilities. In particular, the

are some ôinterestingõ files including what appears to be a master process for running the

Bridge 2.0 (webserver, certain aspects of ZigBee, talking to Hue app, etc.).

Overall, we still find a number of security features present on the various systems that

make it more difficult to attack than typical consumer electronics. Firmware update s

appear always to be encrypte d to protect them from analysis , and are signed to protect

devices from being reprogrammed by another actor.

Despite this, certain engineering trade -offs may cause problems in the future. Bulbs of the

same type use the same encryption key for the firmware files , which means that a leak of

tha t encryption key could allow someone to permanently reprogram lightbulbs over the air .

This could cause a variety of problems, in the extreme case allowing a reflashed bulb to

then reflash nearby bulbs (i.e., a worm).

This work came about due to attempting to answer someoneõs question about the possibility

of a lightbulb worm (hence the title , with the question mark).

Colin OõFlynn

2

1 INTRODUCTION

The Philips Hue is one of the most popular òsmart lightingó products on the market. If you

havenõt used these devices, the idea of a òsmart lightbulbó might seem like another dumb

internet of things example, there are many practical uses that have driven its adoption.

For example, using these smart light bulbs allows you to òrewireó switch layouts. A simple

wall -mount switch (which requires no batteries, as it is powered by a minute amount of

mechanical energy you generate by hitting the switch) means you are not constr ained by

how your house is currently wired , or even placement of the switch. Anyone who has

struggled with a switch that is half -hidden behind a piece of furniture will appreciate such

abilities!

Of course many more advanced uses are possible, such as auto matically adjusting lighting

based on other devices turning on, remotely controlling lights, linking light settings to

motion detection, etc.

The Philips Hue is built on top of the ZigBee Light Link (ZLL) protocol ; you can see more

about this from the ZigB ee Alliance website at http://www.zigbee.org/zigbee -for -

developers/applicationstandards/zigbee -light -link/ . You can also download details from

some of the silicon manufacture rs that make devices for ZLL networks ð for example, NXP

has a PDF at http://www.nxp.com/documents/user_manual/JN -UG-3091.pdf, which goes

through details of the ZLL.

ZigBee itself is built on top of a low -power radio network called IEEE 802.15.4. This

standard is designed for very low -power, low data rate devices. The maximum packet size is

127 bytes and maximum transfer rate is 250 kbit/s. Range varies somewhat based on

conditions & specifics of the radios ð about 25-100m is typical for IEEE 802.15.4 devices in

practical scenarios.

It is possible to achieve ranges of over a 1000m line -of-sight with some IEEE 802.15.4

devices using the standard antennas (i.e., NOT Yagi or high -gain antennas).

ZigBee is commonly run at the 2.4 GHz band (in the same band as Wi -Fi), although there is

a lower -frequency version that can occupy a band around 700 -900 MHz (specific band

depends on region of the world). The ZLL runs entirely on the 2.4 GHz band, thus range

may also depend on how much traffic the ZLL network needs to conflict with .

The central node in these networks is called the òbridgeó by Philips, as it controls all the

light -bulbs. This bridge device contains the IP link as well, typically via an Ethernet jack.

The bridge devices powers up and makes a network, which the various lightbulbs can then

join.

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.nxp.com/documents/user_manual/JN-UG-3091.pdf

Colin OõFlynn

3

ZLL SECURITY TRADE -OFFS

One of the most difficult problems for these typ es of devices is how to securely òjoinó an

authorized network.

If you bring home a smart light, how does it know what network to join, and how does it do

so securely? The IEEE 802.15.4 radio chips (these chips form the basis of any ZigBee device,

be ZLL or otherwise) almost always have support for AES-128 which is used to encrypt

network traffic. In ZLL there is a network -wide key used for all traffic.

Such a network -wide key is very common in these types of networks ; few protocols use

different link keys b etween devices. But how you give the new device that network key is

critical ð we obviously cannot send it in cleartext, in case an attacker is listening.

And some devices (such as the wall -switches) may be so power-constrained they cannot

perform much pro cessing beyond simply sending messages. Anything that uses asymmetric

cryptography or a D -H key exchange is infeasible.

ZLL solves the problem through the use of a master (symmetric) key. This master key is

used to encrypt a network key, which can then be securely sent to a device joining the

network. Anyone making a ZLL device knows this master key, and promises to store it

securely.

This ZLL master key would also be programmed into every ZLL device ð if even one

customer had one insecure product that reve aled the key, it is no longer considered a secret.

However ð all may not be lost. Even if an attacker has the key, they cannot automatically

determine the network key for a given random network. They would have to join that

network or observe the traffic o f another device joining.

An attacker may, however, be able to perform a òLight Stealingó attack. There is a provision

within the ZLL to remotely request that a device is òreset to factory newó state. If an

attacker was in possession of the ZLL master key , they could send such legitimate requests.

To help combat this , devices perform verification based on the received signal strength

indicator (RSSI) of such requests. Devices are only supposed to respond if the signal is

sufficiently strong to indicate it comes from a nearb y device ð in the case of Philips Hue, it

appears to only works if approximately 30 cm away.

In legitimate requests, the tr ansmit power is also lowered. As an attacker we would have no

such issues, and can use excessive transmit power for sending these requests. Such a

request format may allow nearby attackers to temporarily òtake overó lights by forcing

them to join a new net work. More detail on this will be published in a forthcoming paper by

another author (with some details/demos at Blackhat USA 2016).

Ultimately, while you may be surprised by the use of a fixed symmetric master key, given

the various constraints it provide s a reasonable trade -off between a secure implementation

Colin OõFlynn

4

and good òout of boxó experience, which is supposed to allow different manufactures even to

work together.

There are a number of assumptions underlying this of course (mainly about the correctness

of certain implementations), and weõll explore some of these here.

2 PREVIOUS & FUTURE WORK

Iõm far from the first person to look at ZigBee, ZLL, or even the Philips Hue system. I

thought Iõd provide a few links for information that will be of interest to yo u.

Travis Goodspeed has done considerable work in ZigBee hacking:

¶ See one of his Blackhat presentations: https://www.blackhat.com/presentati ons/bh-

usa-09/GOODSPEED/BHUSA09 -Goodspeed-ZigbeeChips-SLIDES.pdf

¶ Other older work published on his blog too, see for example:

http://travisgoodspeed.blogspot.ca/2009/03/breaking -802154-aes128-by-syringe.html

¶ Which references some associated interesting

Tobias Zillnerõs ZigBee Exploited talk & white -paper also is a good quick introduction:

¶ Slides link: https://www.blackhat.com/docs/us -15/materials/us -15-Zillner -ZigBee-

Exploited -The-Good-The-Bad-And-The-Ugly.pdf

¶ Whitepaper link: https://www.blackhat.com/docs/us -15/materials/us -15-Zillner -

ZigBee-Exploited -The-Good-The-Bad-And-The-Ugly -wp.pdf

There are many more people working on hacking ZigBee/IEEE 802.15.4 networks. For

example the KillerBee framework (published by

http://www.riverloopsecurity.com/projects.html) is a good example of how advanc ed tools

can be!

Nitesh Dhanjani has specifically done work on the Philips Hue system:

¶ A 46-page paper is available at

http://www.dhanjani.com/docs/Hacking%20Lighb ulbs%20Hue%20Dhanjani%202013.

pdf

The last referenced paper (Nitesh Dhanjani) goes into considerable detail on protocol -layer

flaws in the Philips Hue system looking at traffic to/from the bridge device. My work has

concentrated only at attacks starting at the bridge and beyond (i.e., no work was done by

me on the network traffic).

While I donõt know the source, the ZLL master key I mentioned earlier appears to be

leaked, showing up in various online sources . Itõs thus possible an attacker could either (a)

perform attacks that require talking to ZLL devices, or (b) impersonate a ZLL device by

being able to decryp t and determine a ZLL link key. This was reported by Tobias Zillner in

his òZigbee Exploitedó talk as well.

https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
http://travisgoodspeed.blogspot.ca/2009/03/breaking-802154-aes128-by-syringe.html
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
http://www.riverloopsecurity.com/projects.html
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf

Colin OõFlynn

5

Also, during my preparation for this wor k I met another researcher, Eyal Ronen , who has

been working hard on similar security analysis, but going much more in -depth on the

actual firmware update process along with what is required to reflash arbitrary bulbs over

the air (OTA).

Eyal previously pu blished a paper demonstrating what could happen should an attacker

take control of your bulbs ð in particular using them to leak data by bulb brightness

changes (see http://www.wisd om.weizmann.ac.il/~eyalro/EyalShamirLed.pdf for this paper).

While at the time Iõm writing this whitepaper for Black Hat 2016 his newer research is not

yet released, I highly recommend checking his website at

http://www.wisdom.weizmann.ac.il/~eyalro/ for updates. His work looks to (a) release

specific attacks again some of these devices, and (b) push these attacks to be useful in

complex and realistic scen arios. Itõs also ongoing, so heõll likely have more attacks in the

future too!

3 USEFUL TOOLS

The objective of this work is to show what type of hacks are possible. The specifics of tools

required depends on what you wish to accomplish. To accomplish the r ooting requires the

minimal amounts of tools:

¶ USB to Serial adapter.

¶ A few paperclips (or some bits of wire).

But for more advanced hacks, youõll start to need additional tools such as:

¶ Bus pirate (SPI flash dumping).

¶ Volt meter.

¶ Oscilloscope.

¶ Fine -tipped soldering iron (I love the Metcal ones).

¶ Stereo microscope for inspecting/soldering.

To do the power analysis & glitching attacks, I also used:

¶ ChipWhisperer Capture hardware (ChipWhisperer -Pro was used here, but most of

the attacks possible with ChipWhisp erer -Lite + some external logic for triggering).

With that background, letõs dive right into some specific examples of the hardware. Iõll start

with the older version of the bridge device.

4 BRIDGE V 1.0

The òbridge v1.0ó are the original version of the Hu e bridge, which are round in appearance.

The internals of the bridge are shown below:

http://www.wisdom.weizmann.ac.il/~eyalro/EyalShamirLed.pdf
http://www.wisdom.weizmann.ac.il/~eyalro/

Colin OõFlynn

6

Colin OõFlynn

7

These bridges contain two sections: the main ARM processor, and the Zigbee ZLL solution

(referred to as the ôZigbee SoCõ. The use of a separate chip for holding the e ntire ZigBee

stack is something weõll see repeated in the second-generation bridge as well.

The main ARM processor is a STM32F217VET6 by ST (direct link to datasheet:

http://www.st.com/content/ccc/resource/technical/document/datasheet/51/ 9b/66/ba/d4/a8/49/4

a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf) .

This is a Cortex M3 device, with 512 Kbyte FLASH memory (internal) + 128Kbytes of

SRAM (internal). It contains a number of cryptographic hardware acceler ators (AES +

3DES + MD5 + SHA -1).

There is an external SPI flash chip (Winbond 25Q16BVS) connected to the ARM processor.

On a virgin bridge this appears to hold simple strings indicating the ZLL groups and

similar information, but is almost entirely fille d with òFFó bytes (i.e., empty):

Once a bridge has been running, it holds additional configuration information. It does not

appear to ever hold an unencrypted firmware update , even during the update process itself

(more details later on that).

The ZigBee section is of most interest to us. It contains a CC2530F256 IEEE 802.15.4 SoC

device, alongside a CC2590 òrange extenderó (i.e., amplifier). There are a number of test

points on the PCB, so I can briefly talk about their purpose in our òfirst lookó at the bridge

device.

BRIDGE DEVICE ð FIND ING SERIAL PORTS

To get an idea of the boot process, we can find 3 serial ports on the PCB which spit data out

at a standard 115,200 baud rate. One is connected to the ARM (status information), and

two are the link betwe en the CC2530 and the ARM. These test points are marked on the

bottom as:

¶ TP30 is the ARM serial log output

http://www.st.com/content/ccc/resource/technical/document/datasheet/51/9b/66/ba/d4/a8/49/4a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/51/9b/66/ba/d4/a8/49/4a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf

Colin OõFlynn

8

¶ TP9/TP10 is the CC2530 to ARM serial port test points

An example of the communication between the ARM and the CC2530 is given below.

Data to ARM fro m CC2530:

[Log,Info,S_DeviceInfo,Booting into normal mode...]

[Log,Info,S_DeviceInfo,DeviceId: IpBridge]

[Log,Info,N_Security,LIB4.4.52]

[Log,Info,N_Security,KeyBitMask,0x0012]

[Log,Info,A_Bridge,Platform version 0.25.0,package_ZigBee

8720,package_Z_Stack 8720,built by LouvreZLL]

[Log,Info,A_Bridge,Product version 5.7.1,SmartBridge 11393,built by

LouvreZLL]

[Bridge,Version,5.7.1,SmartBridge 11393,built by LouvreZLL]

[Bridge,GroupRange,0x5357,0x5367]

[Log,Info,D_Led,dc 16]

[Bridge,NetworkSettings,False,0xB16 3,26DF52A183D85889,11,0,S=0x0001]

[Log,Info,A_Bridge,NwkAddr: 0x0001, Ch: 11, Pan: 0xB163, NwkUpdId: 0,

ExtPanID:26:DF:52:A1:83:D8:58:89]

[Log,Info,D_Led,dc 16]

[TH,Ready,0]

[Connection,A]

[Connection,GetAddress,L=00:17:88:01:01:07:BF:FC,S=0x0001.0]

[Bridg e,StoreGroupRange,0]

[Log,Info,N_ConnectionRouter,Startup network discovery...]

Data to CC2530 from ARM:

[Link,A]

[Link,GetAddress,L=00:17:88:01:01:07:BF:FC,S=0x0001.0]

We can see the general format of requests being sent as [Module, Request1<, Request 2>]

and responses being [Module, Response1 <,Response2>]. Specifics of the number of

arguments seems to vary between parameters.

BRIDGE DEVICE ð TAKI NG OVER SERIAL

The Zigbee SoC contains the secret ZLL encryption key. An interesting attack is that we

never actually need to determine this key, but can instead use the provided Zigbee SoC to

send and receive messages that will be encrypted with the correct key. This attack would be

made more powerful by looking at the Bridge 2.0 device, where we can find more details of

the communications protocol encoded inside a control application.

Iõll demonstrate the data format later when looking at the over -the-air update for the BR30

bulb.

Colin OõFlynn

9

FIRMWARE UPDATE: NET WORK PERSPECTIVE

Itõs relatively easy to monitor the network traffic while performing a firmware update. This

details there is a server which simply provides a file that is downloaded, this file has a

name like

firmware_rel_cc2530_encrypted_stm32_encrypted _01030262_0012.fw . As

suggested by the name, it includes both the firmware for the CC2530 and for the STM32

processor.

Both appear to be encrypted (no noticeable strings, etc). Itõs easy to get different releases of

this file, and comparing them shows th e encryption does not appear to be something like a

stream cipher using the same key, as we would expect runs of the same encrypted

sequences where code aligned between them (such as the value of strings, init code, etc.).

Our primary interest at this poi nt is the ZigBee side, so will concentrate on how the

CC2530 firmware update works. Iõll discuss that next.

FIRMWARE UPDATE: CC2 530

Using a Logic Pro 16, I could log the entire serial protoco l during the update process to see

what happens during this proc ess. It took a little while to perform the complete update, as

can be seen here:

We can look closer, and see ògapsó between groups of packets:

Each of those òGapsó represents the delay of a page erase. Zooming in closer you can see

there is 32 packets, each packet containing 64 bytes of data between page erases:

Colin OõFlynn

10

This 2048 byte spacing aligns with the actual page size of the CC2530. Looking at the

bootloader protocol, we can determine it appears to be an implementation of the

òSerialBootLoaderó (see http://processors.wiki.ti.com/index.php/SerialBootLoader for

command list).

An example SBL implementation with encryption is available at https://github.com/lee -

wei/CC2540/tree/master/Projects/ble/util/EBL/app , which is a version for the CC2540. The

file format appears to differ from this project, but it provides a useful starting point to

understand a possible code flow.

The frame format is fairly simple, with 6 bytes of header:

¶ FE is the òstart of frameó header.

¶ 42 is the length (66 bytes, payload + addr)

¶ 00 01 is a fixed sequence

¶ 02 00 is the page to write (in LSB, MSB format, so this equates to 0x0002)

¶ Next follows 64 bytes of (encrypted) data.

¶ Finally a FCS byte is calculated as the XOR of the previous bytes (see the SBL

documentation for details).

If the message is OK (FCS passes + the expected address was sent), the bootloader response

with an OK command. At this point the next frame can be sent:

To enter bootloader mode , pin P0.1 was determined to be responsible for entering

bootloader mode. If this pin is pulled HIGH after a res et, the bootloader will be entered. If

the pin is LOW , the regular code will run. Assuming we entered the bootloader, we can

send the òsign-onó command, FF FF FE 00 00 00 00 . The bootloader will respond with

FE 05 00 80 00 01 01 00 66 E3 :

http://processors.wiki.ti.com/index.php/SerialBootLoader
https://github.com/lee-wei/CC2540/tree/master/Projects/ble/util/EBL/app
https://github.com/lee-wei/CC2540/tree/master/Projects/ble/util/EBL/app

Colin OõFlynn

11

We can then shovel groups of packets to the bootloader. The actual encrypted firmware

data is part of the single update file as mentioned. The firmware that is passed over the

serial port is directly found in the downloaded firmware file ð that is the data sent over the

serial port is not modified by the STM32 itself.

Thus any encryption happened before the file was uploaded to the Philips servers. This

makes our attack more difficult, as we will require to focus on the CC2530 decryption

process. Possible attack scenarios include:

¶ Using the SRAM dump attack to see if keys are in memory.

¶ Using side -channel power analysis.

¶ Using glitching attacks.

¶ Breaking the fuse bits to allow reading the memory out.

¶ Trying to loa d a program which allows reading the memory out.

I explored t he first three of these options here.

SRAM DUMPING

In order to get an idea what exactly is happening, I used Travis Goodspeedõs CC òSRAM

dumpó attack (see http://www.blackhat.com/presentations/bh -usa-

09/GOODSPEED/BHUSA09 -Goodspeed-ZigbeeChips-PAPER.pdf).

This allows me to dump the SRAM contents of a device, BUT it requires erasing th e device

to do so. Luckily the bridge 1.0 devices are available cheaply in bulk due to the release of

the Bridge 2.0, so many people were upgrading. I had a good boneyard of dead devices from

erasing them at various stages:

http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf

Colin OõFlynn

12

The debug pins are at TP29/TP3 1 for DD/DC respectively. You also need the reset pin at

TP28. Note the reset pin is driven by the STM32 by default ð you can either try holding the

STM32 in reset itself to float the pin, or cut the reset by lifting a resistor and instead

driving the rese t pin from there, as I have done:

I erased several devices at various stages, such as:

¶ When running normally (not in the bootloader) .

¶ At various stages of the bootloader ð before receiving any data, after receiving the

first valid frame, second valid frame, and a òmuch lateró frame.

The following shows a dump comparing two such locations ð here is the difference between

the first valid frame, and after the second valid frame:

