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A LIGHTBULB WORM? 
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(Black Hat USA 2016 White Paper) 

ABSTRACT 

This whitepaper is designed to show some details of the Philips Hue system. It is not 

designed to demonstrate any specific attack, but instead a chance to “poke around” to see 

what security features are present. It is designed to serve as a reference for those designing 

similar systems, to give an idea what attack surfaces might be exploited. 

This analysis focuses on the embedded hardware itself. In particular, I look at the Bridge 

1.0 (round), the Bridge 2.0 (square), the low-cost white light bulbs, and the BR30 color bulb. 

The newer Bridge 2.0 makes an interesting target for hardware hackers to use, as it’s 

possible to obtain a root console (as discussed herein) allowing you to take control of this 

device. 

Having access to the root console also allows more detailed analysis of the binaries present 

on the bridge, which could lead to the discovery of other vulnerabilities. In particular, the 

are some ‘interesting’ files including what appears to be a master process for running the 

Bridge 2.0 (webserver, certain aspects of ZigBee, talking to Hue app, etc.). 

Overall, we still find a number of security features present on the various systems that 

make it more difficult to attack than typical consumer electronics. Firmware updates 

appear always to be encrypted to protect them from analysis, and are signed to protect 

devices from being reprogrammed by another actor. 

Despite this, certain engineering trade-offs may cause problems in the future. Bulbs of the 

same type use the same encryption key for the firmware files, which means that a leak of 

that encryption key could allow someone to permanently reprogram lightbulbs over the air. 

This could cause a variety of problems, in the extreme case allowing a reflashed bulb to 

then reflash nearby bulbs (i.e., a worm). 

This work came about due to attempting to answer someone’s question about the possibility 

of a lightbulb worm (hence the title, with the question mark). 
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1 INTRODUCTION 

The Philips Hue is one of the most popular “smart lighting” products on the market. If you 

haven’t used these devices,  the idea of a “smart lightbulb” might seem like another dumb 

internet of things example, there are many practical uses that have driven its adoption. 

For example, using these smart light bulbs allows you to “rewire” switch layouts. A simple 

wall-mount switch (which requires no batteries, as it is powered by a minute amount of 

mechanical energy you generate by hitting the switch) means you are not constrained by 

how your house is currently wired, or even placement of the switch. Anyone who has 

struggled with a switch that is half-hidden behind a piece of furniture will appreciate such 

abilities! 

Of course many more advanced uses are possible, such as automatically adjusting lighting 

based on other devices turning on, remotely controlling lights, linking light settings to 

motion detection, etc. 

The Philips Hue is built on top of the ZigBee Light Link (ZLL) protocol; you can see more 

about this from the ZigBee Alliance website at http://www.zigbee.org/zigbee-for-

developers/applicationstandards/zigbee-light-link/ . You can also download details from 

some of the silicon manufacturers that make devices for ZLL networks – for example, NXP 

has a PDF at http://www.nxp.com/documents/user_manual/JN-UG-3091.pdf, which goes 

through details of the ZLL. 

ZigBee itself is built on top of a low-power radio network called IEEE 802.15.4. This 

standard is designed for very low-power, low data rate devices. The maximum packet size is 

127 bytes and maximum transfer rate is 250 kbit/s. Range varies somewhat based on 

conditions & specifics of the radios – about 25-100m is typical for IEEE 802.15.4 devices in 

practical scenarios. 

It is possible to achieve ranges of over a 1000m line-of-sight with some IEEE 802.15.4 

devices using the standard antennas (i.e., NOT Yagi or high-gain antennas). 

ZigBee is commonly run at the 2.4 GHz band (in the same band as Wi-Fi), although there is 

a lower-frequency version that can occupy a band around 700-900 MHz (specific band 

depends on region of the world). The ZLL runs entirely on the 2.4 GHz band, thus range 

may also depend on how much traffic the ZLL network needs to conflict with. 

The central node in these networks is called the “bridge” by Philips, as it controls all the 

light-bulbs. This bridge device contains the IP link as well, typically via an Ethernet jack. 

The bridge devices powers up and makes a network, which the various lightbulbs can then 

join. 

 

 

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.nxp.com/documents/user_manual/JN-UG-3091.pdf
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ZLL SECURITY TRADE-OFFS 

One of the most difficult problems for these types of devices is how to securely “join” an 

authorized network. 

If you bring home a smart light, how does it know what network to join, and how does it do 

so securely? The IEEE 802.15.4 radio chips (these chips form the basis of any ZigBee device, 

be ZLL or otherwise) almost always have support for AES-128 which is used to encrypt 

network traffic. In ZLL there is a network-wide key used for all traffic. 

Such a network-wide key is very common in these types of networks; few protocols use 

different link keys between devices. But how you give the new device that network key is 

critical – we obviously cannot send it in cleartext, in case an attacker is listening. 

And some devices (such as the wall-switches) may be so power-constrained they cannot 

perform much processing beyond simply sending messages. Anything that uses asymmetric 

cryptography or a D-H key exchange is infeasible. 

ZLL solves the problem through the use of a master (symmetric) key. This master key is 

used to encrypt a network key, which can then be securely sent to a device joining the 

network. Anyone making a ZLL device knows this master key, and promises to store it 

securely. 

This ZLL master key would also be programmed into every ZLL device – if even one 

customer had one insecure product that revealed the key, it is no longer considered a secret. 

However – all may not be lost. Even if an attacker has the key, they cannot automatically 

determine the network key for a given random network. They would have to join that 

network or observe the traffic of another device joining.  

An attacker may, however, be able to perform a “Light Stealing” attack. There is a provision 

within the ZLL to remotely request that a device is “reset to factory new” state. If an 

attacker was in possession of the ZLL master key, they could send such legitimate requests.  

To help combat this, devices perform verification based on the received signal strength 

indicator (RSSI) of such requests. Devices are only supposed to respond if the signal is 

sufficiently strong to indicate it comes from a nearby device – in the case of Philips Hue, it 

appears to only works if approximately 30 cm away. 

In legitimate requests, the transmit power is also lowered. As an attacker we would have no 

such issues, and can use excessive transmit power for sending these requests. Such a 

request format may allow nearby attackers to temporarily “take over” lights by forcing 

them to join a new network. More detail on this will be published in a forthcoming paper by 

another author (with some details/demos at Blackhat USA 2016). 

Ultimately, while you may be surprised by the use of a fixed symmetric master key, given 

the various constraints it provides a reasonable trade-off between a secure implementation 
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and good “out of box” experience, which is supposed to allow different manufactures even to 

work together. 

There are a number of assumptions underlying this of course (mainly about the correctness 

of certain implementations), and we’ll explore some of these here. 

2 PREVIOUS & FUTURE WORK 

I’m far from the first person to look at ZigBee, ZLL, or even the Philips Hue system. I 

thought I’d provide a few links for information that will be of interest to you. 

Travis Goodspeed has done considerable work in ZigBee hacking: 

 See one of his Blackhat presentations: https://www.blackhat.com/presentations/bh-

usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf 

 Other older work published on his blog too, see for example: 

http://travisgoodspeed.blogspot.ca/2009/03/breaking-802154-aes128-by-syringe.html  

 Which references some associated interesting 

Tobias Zillner’s ZigBee Exploited talk & white-paper also is a good quick introduction: 

 Slides link: https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-

Exploited-The-Good-The-Bad-And-The-Ugly.pdf  

 Whitepaper link: https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-

ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf  

There are many more people working on hacking ZigBee/IEEE 802.15.4 networks. For 

example the KillerBee framework (published by 

http://www.riverloopsecurity.com/projects.html) is a good example of how advanced tools 

can be! 

Nitesh Dhanjani has specifically done work on the Philips Hue system: 

 A 46-page paper is available at 

http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.

pdf  

The last referenced paper (Nitesh Dhanjani) goes into considerable detail on protocol-layer 

flaws in the Philips Hue system looking at traffic to/from the bridge device. My work has 

concentrated only at attacks starting at the bridge and beyond (i.e., no work was done by 

me on the network traffic). 

While I don’t know the source, the ZLL master key I mentioned earlier appears to be 

leaked, showing up in various online sources. It’s thus possible an attacker could either (a) 

perform attacks that require talking to ZLL devices, or (b) impersonate a ZLL device by 

being able to decrypt and determine a ZLL link key. This was reported by Tobias Zillner in 

his “Zigbee Exploited” talk as well. 

https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
http://travisgoodspeed.blogspot.ca/2009/03/breaking-802154-aes128-by-syringe.html
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
http://www.riverloopsecurity.com/projects.html
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf


Colin O’Flynn               

 

5 

 

Also, during my preparation for this work I met another researcher, Eyal Ronen, who has 

been working hard on similar security analysis, but going much more in-depth on the 

actual firmware update process along with what is required to reflash arbitrary bulbs over 

the air (OTA). 

Eyal previously published a paper demonstrating what could happen should an attacker 

take control of your bulbs – in particular using them to leak data by bulb brightness 

changes (see http://www.wisdom.weizmann.ac.il/~eyalro/EyalShamirLed.pdf for this paper). 

While at the time I’m writing this whitepaper for Black Hat 2016 his newer research is not 

yet released, I highly recommend checking his website at 

http://www.wisdom.weizmann.ac.il/~eyalro/ for updates. His work looks to (a) release 

specific attacks again some of these devices, and (b) push these attacks to be useful in 

complex and realistic scenarios. It’s also ongoing, so he’ll likely have more attacks in the 

future too! 

3 USEFUL TOOLS 

The objective of this work is to show what type of hacks are possible. The specifics of tools 

required depends on what you wish to accomplish. To accomplish the rooting requires the 

minimal amounts of tools: 

 USB to Serial adapter. 

 A few paperclips (or some bits of wire). 

But for more advanced hacks, you’ll start to need additional tools such as: 

 Bus pirate (SPI flash dumping). 

 Volt meter. 

 Oscilloscope. 

 Fine-tipped soldering iron (I love the Metcal ones). 

 Stereo microscope for inspecting/soldering. 

To do the power analysis & glitching attacks, I also used: 

 ChipWhisperer Capture hardware (ChipWhisperer-Pro was used here, but most of 

the attacks possible with ChipWhisperer-Lite + some external logic for triggering). 

With that background, let’s dive right into some specific examples of the hardware. I’ll start 

with the older version of the bridge device. 

4 BRIDGE V 1.0 

The “bridge v1.0” are the original version of the Hue bridge, which are round in appearance. 

The internals of the bridge are shown below: 

http://www.wisdom.weizmann.ac.il/~eyalro/EyalShamirLed.pdf
http://www.wisdom.weizmann.ac.il/~eyalro/
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These bridges contain two sections: the main ARM processor, and the Zigbee ZLL solution 

(referred to as the ‘Zigbee SoC’. The use of a separate chip for holding the entire ZigBee 

stack is something we’ll see repeated in the second-generation bridge as well. 

The main ARM processor is a STM32F217VET6 by ST (direct link to datasheet: 

http://www.st.com/content/ccc/resource/technical/document/datasheet/51/9b/66/ba/d4/a8/49/4

a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf) . 

This is a Cortex M3 device, with 512 Kbyte FLASH memory (internal) + 128Kbytes of 

SRAM (internal). It contains a number of cryptographic hardware accelerators (AES + 

3DES + MD5 + SHA-1).  

There is an external SPI flash chip (Winbond 25Q16BVS) connected to the ARM processor. 

On a virgin bridge this appears to hold simple strings indicating the ZLL groups and 

similar information, but is almost entirely filled with “FF” bytes (i.e., empty): 

 

Once a bridge has been running, it holds additional configuration information. It does not 

appear to ever hold an unencrypted firmware update, even during the update process itself 

(more details later on that). 

The ZigBee section is of most interest to us. It contains a CC2530F256 IEEE 802.15.4 SoC 

device, alongside a CC2590 “range extender” (i.e., amplifier). There are a number of test 

points on the PCB, so I can briefly talk about their purpose in our “first look” at the bridge 

device. 

BRIDGE DEVICE – FINDING SERIAL PORTS 

To get an idea of the boot process, we can find 3 serial ports on the PCB which spit data out 

at a standard 115,200 baud rate. One is connected to the ARM (status information), and 

two are the link between the CC2530 and the ARM. These test points are marked on the 

bottom as: 

 TP30 is the ARM serial log output 

http://www.st.com/content/ccc/resource/technical/document/datasheet/51/9b/66/ba/d4/a8/49/4a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/51/9b/66/ba/d4/a8/49/4a/CD00263874.pdf/files/CD00263874.pdf/jcr:content/translations/en.CD00263874.pdf
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 TP9/TP10 is the CC2530 to ARM serial port test points 

An example of the communication between the ARM and the CC2530 is given below. 

Data to ARM from CC2530: 

[Log,Info,S_DeviceInfo,Booting into normal mode...] 

[Log,Info,S_DeviceInfo,DeviceId: IpBridge] 

[Log,Info,N_Security,LIB4.4.52] 

[Log,Info,N_Security,KeyBitMask,0x0012] 

[Log,Info,A_Bridge,Platform version 0.25.0,package_ZigBee 

8720,package_Z_Stack 8720,built by LouvreZLL] 

[Log,Info,A_Bridge,Product version 5.7.1,SmartBridge 11393,built by 

LouvreZLL] 

[Bridge,Version,5.7.1,SmartBridge 11393,built by LouvreZLL] 

[Bridge,GroupRange,0x5357,0x5367] 

[Log,Info,D_Led,dc 16] 

[Bridge,NetworkSettings,False,0xB163,26DF52A183D85889,11,0,S=0x0001] 

[Log,Info,A_Bridge,NwkAddr: 0x0001, Ch: 11, Pan: 0xB163, NwkUpdId: 0, 

ExtPanID:26:DF:52:A1:83:D8:58:89] 

[Log,Info,D_Led,dc 16] 

[TH,Ready,0] 

[Connection,A] 

[Connection,GetAddress,L=00:17:88:01:01:07:BF:FC,S=0x0001.0] 

[Bridge,StoreGroupRange,0] 

[Log,Info,N_ConnectionRouter,Startup network discovery...] 

Data to CC2530 from ARM: 

[Link,A] 

[Link,GetAddress,L=00:17:88:01:01:07:BF:FC,S=0x0001.0] 

We can see the general format of requests being sent as [Module, Request1<, Request 2>] 

and responses being   [Module, Response1 <,Response2>]. Specifics of the number of 

arguments seems to vary between parameters. 

BRIDGE DEVICE – TAKING OVER SERIAL 

The Zigbee SoC contains the secret ZLL encryption key. An interesting attack is that we 

never actually need to determine this key, but can instead use the provided Zigbee SoC to 

send and receive messages that will be encrypted with the correct key. This attack would be 

made more powerful by looking at the Bridge 2.0 device, where we can find more details of 

the communications protocol encoded inside a control application. 

I’ll demonstrate the data format later when looking at the over-the-air update for the BR30 

bulb. 
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FIRMWARE UPDATE: NETWORK PERSPECTIVE 

It’s relatively easy to monitor the network traffic while performing a firmware update. This 

details there is a server which simply provides a file that is downloaded, this file has a 

name like 

firmware_rel_cc2530_encrypted_stm32_encrypted_01030262_0012.fw . As 

suggested by the name, it includes both the firmware for the CC2530 and for the STM32 

processor.  

Both appear to be encrypted (no noticeable strings, etc). It’s easy to get different releases of 

this file, and comparing them shows the encryption does not appear to be something like a 

stream cipher using the same key, as we would expect runs of the same encrypted 

sequences where code aligned between them (such as the value of strings, init code, etc.).  

Our primary interest at this point is the ZigBee side, so will concentrate on how the 

CC2530 firmware update works. I’ll discuss that next. 

 

FIRMWARE UPDATE: CC2530 

Using a Logic Pro 16, I could log the entire serial protocol during the update process to see 

what happens during this process. It took a little while to perform the complete update, as 

can be seen here: 

 

We can look closer, and see “gaps” between groups of packets: 

 

Each of those “Gaps” represents the delay of a page erase. Zooming in closer you can see 

there is 32 packets, each packet containing 64 bytes of data between page erases: 
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This 2048 byte spacing aligns with the actual page size of the CC2530. Looking at the 

bootloader protocol, we can determine it appears to be an implementation of the 

“SerialBootLoader” (see http://processors.wiki.ti.com/index.php/SerialBootLoader for 

command list). 

An example SBL implementation with encryption is available at https://github.com/lee-

wei/CC2540/tree/master/Projects/ble/util/EBL/app, which is a version for the CC2540. The 

file format appears to differ from this project, but it provides a useful starting point to 

understand a possible code flow. 

The frame format is fairly simple, with 6 bytes of header: 

 

 FE is the “start of frame” header.  

 42 is the length (66 bytes, payload + addr) 

 00 01 is a fixed sequence 

 02 00 is the page to write (in LSB, MSB format, so this equates to 0x0002) 

 Next follows 64 bytes of (encrypted) data.  

 Finally a FCS byte is calculated as the XOR of the previous bytes (see the SBL 

documentation for details). 

If the message is OK (FCS passes + the expected address was sent), the bootloader response 

with an OK command. At this point the next frame can be sent: 

 

To enter bootloader mode, pin P0.1 was determined to be responsible for entering 

bootloader mode. If this pin is pulled HIGH after a reset, the bootloader will be entered. If 

the pin is LOW, the regular code will run. Assuming we entered the bootloader, we can 

send the “sign-on” command, FF FF FE 00 00 00 00. The bootloader will respond with 

FE 05 00 80 00 01 01 00 66 E3: 

http://processors.wiki.ti.com/index.php/SerialBootLoader
https://github.com/lee-wei/CC2540/tree/master/Projects/ble/util/EBL/app
https://github.com/lee-wei/CC2540/tree/master/Projects/ble/util/EBL/app
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We can then shovel groups of packets to the bootloader. The actual encrypted firmware 

data is part of the single update file as mentioned. The firmware that is passed over the 

serial port is directly found in the downloaded firmware file – that is the data sent over the 

serial port is not modified by the STM32 itself. 

Thus any encryption happened before the file was uploaded to the Philips servers. This 

makes our attack more difficult, as we will require to focus on the CC2530 decryption 

process. Possible attack scenarios include: 

 Using the SRAM dump attack to see if keys are in memory. 

 Using side-channel power analysis. 

 Using glitching attacks. 

 Breaking the fuse bits to allow reading the memory out. 

 Trying to load a program which allows reading the memory out. 

I explored the first three of these options here. 

 

 

SRAM DUMPING 

In order to get an idea what exactly is happening, I used Travis Goodspeed’s CC “SRAM 

dump” attack (see http://www.blackhat.com/presentations/bh-usa-

09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf). 

This allows me to dump the SRAM contents of a device, BUT it requires erasing the device 

to do so. Luckily the bridge 1.0 devices are available cheaply in bulk due to the release of 

the Bridge 2.0, so many people were upgrading. I had a good boneyard of dead devices from 

erasing them at various stages: 

http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf
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The debug pins are at TP29/TP31 for DD/DC respectively. You also need the reset pin at 

TP28. Note the reset pin is driven by the STM32 by default – you can either try holding the 

STM32 in reset itself to float the pin, or cut the reset by lifting a resistor and instead 

driving the reset pin from there, as I have done: 

 

I erased several devices at various stages, such as: 

 When running normally (not in the bootloader). 

 At various stages of the bootloader – before receiving any data, after receiving the 

first valid frame, second valid frame, and a “much later” frame. 

The following shows a dump comparing two such locations – here is the difference between 

the first valid frame, and after the second valid frame: 
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Note the messages from address 0xA1 to 0xA6 is the TX buffer (that was the FE 01 00 81 

00 80 that was sent in response to an accepted packet). The part after that is the received 

data, suggesting this is the RX buffer. 

I was hoping the data was decrypted in-place and left in SRAM, but it appears that the 

bootloader is overwriting memory once done with it. This is suggested by the block of FF in 

place of the RX buffer – it’s assumed that perhaps the first frame didn’t include any 

encrypted data, but was instead setup information, the expected signature, etc. 
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In addition, I didn’t find any keys that appeared to decrypt the firmware file. This required 

some guesses on my part – for example I didn’t try AES-CTR mode decryption, I was only 

using AES-CBC with various key sizes & byte orders. 

The known ZLL master key also did not appear in any of the SRAM dumps (including 

dumps when the device was running normally, not in bootloader mode).  

This suggests Philips was aware of this attack vector, and rather actively worked to avoid 

leaving sensitive data in memory. This attack was published in 2009, so we would hope the 

designers were aware of it, and avoided keeping sensitive data in SRAM when not needed. 

While the data is presumably still in memory at some point, it would require very precise 

timing to recover this data. In addition, it would come at a large cost in terms of number of 

bridge devices killed. 

For the bootloader at least, we can avoid needing so many bridges by taking advantage of 

glitch attacks. 

GLITCH ATTACKS 

Rather than erasing the device, we can use clock glitching to dump the buffer (see 

http://wiki.newae.com/Tutorial_A7_Glitch_Buffer_Attacks for a tutorial). This is possible 

because there is likely some transmit code like the following: 

for(uint8 i = 0; i < data_to_send; i++){ 

 uart_write(tx_buf[i]); 

} 

We can use a glitch attack to cause this loop to send more data than expected, which will 

send the RX buffer back to us. This works because the RX buffer is located in memory after 

the TX buffer. Causing the above transmit loop to execute additional iterations will simply 

transmit the memory beyond the TX buffer. 

If this RX buffer now contains decrypted data, it would also be sent to us. This was 

successful in that it allowed reading out the RX buffer, as the following shows: 

http://wiki.newae.com/Tutorial_A7_Glitch_Buffer_Attacks


Colin O’Flynn               

 

15 

 

 

This used a clock glitch inserted after receiving the correct response. This caused the 

system to continue sending data back to me, and allowed recovery of the complete RX buffer 

(along with some memory beyond that buffer). 

At this point I haven’t determined the timing for reading the decrypted data – the data 

appears to have been wiped by the time the glitches cause the data to be read back. Further 

work is required, such as inserting glitches to avoid wiping the memory. 

Because the ZLL master key is already known, getting the decrypted bridge firmware may 

not be of great value. It’s still possible there could be bugs in the bridge interface we wish to 

exploit, but I haven’t pushed further in this area. 

SIDE-CHANNEL POWER ANALYSIS 

Side-channel power analysis is another potential method of retrieving the encryption key. I 

designed a custom board for both side-channel power analysis and the glitching attacks, on 

which I mounted a CC2530 extracted from a bridge device: 
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Using the known protocol, I could cause this device to perform the bootloading process (and 

thus perform the decryption operation). 

Based on the timing, it seemed likely the AES hardware accelerator in the CC2530 is used. 

At this point the CC2530 hardware accelerator has not been broken, so performing side-

channel power analysis would first require breaking the hardware accelerator in the ideal 

case. 

This would entail a time commitment beyond what would be required to move my work 

(and answer the question in the general case) forward. 
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Given enough time I think one of the above attacks looks likely to succeed, but they are not 

trivial to get either the timing or the measurements working. Instead I’ll move onto the 

newer bridge devices, which have a more interesting architecture. 

5 BRIDGE V 2.0 

The top and bottom side of the bridge is shown below: 
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The bridge itself has a QCA4531 main SoC, which is a MIPS processor by Qualcomm. It’s 

designed for these “internet of things” type environments. 

There is DDR memory associated with it, alongside a 1GBit SPI-connected NAND flash P/N 

GigaDevice GD5F1GQ4UC (datasheet: http://gigadevice.com/product/download/242.html ), 

and a smaller SPI-connected NOR flash (this is the standard type of SPI flash), P/N 

25Q41BT. 

The two flash memories are present because the smaller SPI flash contains the bootloader. 

This is loaded first, and then the larger flash memory is used to load the kernel & 

filesystem. 

http://gigadevice.com/product/download/242.html
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For the ZigBee connection, an Atmel SAMR21E18A is provided. This is a very low-power 

Cortex-M0+ ARM processor that also has an IEEE 802.15.4 radio built in. Once again it has 

a small SPI flash memory connected, presumably for the purpose of storing various ZigBee 

information. 

The connection between the SAMR21E18A and the QCA4531 is mostly done through a USB 

to Serial chip, a PL2303SA mounted at SU7. In addition, there is a buffer at SU8 which 

holds the SAMR21 in reset until the QCA4531 is ready. This buffer is assumed present 

because the input appears to be 2.5V logic, and the output a 3.3V logic. The test pad at 

TP34 allows an override of this logic, to avoid waiting for the QCA4531 to boot. You can also 

lift the pad of SU8 that connects to the reset pin of the SAMR21 (this is what I did). 

The SAMR21 reset is not a labeled test point. The TX/RX pair is at TP14 and a nearby 

unnamed test point. All of these are shown below: 

 

The additional connections labeled “power analysis” and “CLK-IN” are used for performing 

side-channel power analysis (more on this later). 

The SAMR21 has a programming heading at J7, which can be mounted as it uses a 

standard Atmel 0.05” spacing 10-pin header. Even with this header mounted the chip did 

not respond to programming commands. The reset pin was wired to the header for this test 

(by default only the SWDIO and SWCLK pins were wired to the header), and the pin from 

SU8 was lifted to avoid driving the reset pin during these attempts. 

For the QCA4531 I didn’t find a test point with an easy “reset” pin. This is useful as holding 

the main QCA4531 chip in reset was needed during analysis of the SAMR21 without 
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removing it from the board. As the SAMR21 reset pin is driven by a buffer, it still required 

lifting the reset pin, as mentioned previously. 

Instead, I determined there appeared to be a pin that when pulled low caused a reset to 

happen. This was found by probing with a 1K resistor to ground – this should be 

sufficiently strong to pull down a logic pin, but without shorting out other pins. 

I don’t know if the pin is actually reset or something else (a test pin, shutdown pin, etc) but 

it “did the trick”. In particular, power consumption was much lower when this pin was held 

down, indicating processing was not occurring. This pin connection is shown below, the top 

part of this photo is near the edge of the PCB: 

 

Considerable mechanical support is required here – the “pin” is actually a small amount of 

exposed metal, as the actual connection is underneath the chip. I couldn’t find anywhere 

this pin connects to on the board which would have been an easier test point. Not shown in 

the photo is a large blob of glue placed over this connection, and the wire is wrapped around 

a hole in the PCB to give it more mechanical support. 

BRIDGE DEVICE – FINDING SERIAL PORTS 

Finding serial ports is again done with probing around using an oscilloscope to look for 

interesting traffic after a boot. 

The serial port for the ZigBee SoC was discussed above, and the serial port for the main 

QCA4531 will be discussed below. Note the traffic on the ZigBee SoC took some time to 

happen after a reboot (~30 – 60 seconds), as the ZigBee SoC is held in reset by the 

QCA4531 until it fully boots up. 
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GETTING ROOT ON LINUX 

Getting root on these devices can be accomplished with little effort, and I’ll briefly describe 

the process. This allows you the capability of performing further hardware hacking attacks, 

as well as analyzing some of the binaries on the system. 

First, we’ll connect a serial console. For the serial cable (a standard 3.3V type one, DO NOT 

use a 5V cable), there is a 6-pin header along the bottom. Pin ‘1’ has a square footprint, and 

counting from pin 1 the connections are: 

 Pin 1 = GND 

 Pin 4 = RX In (connect to TX Out of your serial cable) 

 Pin 5 = TX Out (connect to RX in of your serial cable). 

The following shows an example of using paper-clips to connect these cables up (to avoid 

soldering): 

 

Next,  confirm you see some boot output like the following: 

U-Boot 1.1.4 (Sep  8 2015 - 04:08:21) 

 

bsb002 - Honey Bee 2.0DRAM:   

sri 

Honey Bee 2.0 

ath_ddr_initial_config(195): (16bit) ddr2 init 

tap = 0x00000003 

Tap (low, high) = (0x8, 0x22) 

Tap values = (0x15, 0x15, 0x15, 0x15) 

64 MB 

Top of RAM usable for U-Boot at: 84000000 

Reserving 214k for U-Boot at: 83fc8000 

… 
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What we need to do is short a test-point on the NAND SPI flash during the boot process. 

This must occur right after the following is printed to the serial port (roughly): 

Net:   ath_gmac_enet_initialize... 

Fetching MAC Address from 0x83febe80 

Fetching MAC Address from 0x83febe80 

ath_gmac_enet_initialize: reset mask:c02200  

Scorpion ---->S27 PHY* 

S27 reg init 

: cfg1 0x800c0000 cfg2 0x7114 

eth0: 00:03:7f:11:20:ce 

athrs27_phy_setup ATHR_PHY_CONTROL 4 :1000 

athrs27_phy_setup ATHR_PHY_SPEC_STAUS 4 :10 

Which occurs 1-3 seconds after power-on. The short is simply to use a paperclip or wire 

between the GND pin and the following test-point near the NAND FLASH chip: 

 

This will cause the NAND chip to no longer be detected by u-boot, which should fall out to 

the console. At this point you can set a few environmental variables, and save them to the 

non-volatile memory: 

ath> setenv bootdelay 3 

ath> printenv security 

***COPY THE DEFAULT VALUE THAT WAS PRINTED & SAVE THIS SOMEWHERE** 

ath> setenv security '$5$wbgtEC1iF$ugIfQUoE7SNg4mplDI/7xdfLC7jXoMAkupeMsm10hY9' 

ath> printenv security 

security=$5$wbgtEC1iF$ugIfQUoE7SNg4mplDI/7xdfLC7jXoMAkupeMsm10hY9 

ath> saveenv 

ath> reset 
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The first one is simply making it possible to hit “enter” on the serial port during boot to fall 

into the bootloader menu. This means you only need to perform the NAND flash trick once, 

then not worry about doing it again, even if you want to modify other strings in the u-boot 

menu. 

The second is writing a new root password. Before doing that you should save the old 

password. These are in the shadow-file format, and you can use ‘mkpasswd’ to generate 

your own. 

The given example results in a root password of ‘toor’. Once the device resets, you should be 

able to log in with root/toor and receive a prompt. This will happen after the device fully 

boots, and you can press “enter” to receive the log-in prompt. You can see a video of this 

being performed at https://www.youtube.com/watch?v=hi2D2MnwiGM . 

At this point, you’ll want to edit the file /etc/rc.local and add the following to enable telnet: 

iptables -I INPUT -p tcp --dport 23 --syn -j ACCEPT 

telnetd 

 

You may also want to add the /etc/rc.local to the /etc/sysupgrade.conf file to avoid it being 

overwritten in the future. 

Before powering off the system, use the ‘halt’ command. This will cause data to be written 

to the flash memory (otherwise it may be lost). Use the halt command and then power-cycle 

the device to reset it. If you fail to do this the changes to rc.local might not be written to 

flash and the daemon won’t come up. 

Once the system comes up again, you should be able to telnet in! You’ll need to know the IP 

address, which you can either get via the Hue App, or using ‘ifconfig’ on the serial console, 

or by checking your DHCP tables in your router. 

You can also try pinging Philips-hue.local which should resolve to the IP address of 

your bridge (this won’t work on Windows 7 by default, but will on Linux / Mac OSX and 

perhaps Windows 10). 

GETTING A MASTER SHELL 

While the above trick is the best option for getting a useful root shell, I originally used u-

boot to modify the ‘init’ argument of the kernel. This was done with the following: 

setenv std_bootargs 'board=BSB002 console=ttyS0,115200 ubi.mtd=overlay 

rootfs=/dev/mtdblock:rootfs rootfstype=squashfs noinitrd 

init=/bin/sh'; 

Where the default would be: 

https://www.youtube.com/watch?v=hi2D2MnwiGM
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setenv std_bootargs 'board=BSB002 console=ttyS0,115200 ubi.mtd=overlay 

rootfs=/dev/mtdblock:rootfs rootfstype=squashfs noinitrd 

init=/sbin/init'; 

By calling /bin/sh, the system falls into a root shell on boot. However it does not run the 

‘init’ binary, which causes a lot of problems. In particular the filesystem remains read-only, 

and a number of entries are not populated (such as the /proc filesystem). 

However the /bin/sh shell is powerful as it did not require me to know anything about how 

the ‘security’ envvar was used. Instead I determined later that it was being copied into the 

shadow file, and thus was the root password. 

INTERESTING FILES AND NOTES 

There are many interesting files available which can be further studied: 

 The main function of the router seems to be held in a binary called ‘ipbridge’ at 

/usr/sbin. This seems to be the most likely location to find flaws. This binary appears 

to be everything from the webserver (including having the HTML pages encoded 

inside it) to handling ZigBee events to parsing requests. 

 

 The `ipbridge_io’ in particular talks with the Zigbee SoC, meaning this binary in 

combination with ‘ipbridge’ could tell us: 

o What commands are used by the SoC (so we can use the SoC ourselves). 

o Are there any bugs allowing the SoC to send messages which cause problems, 

potentially allowing an attacker that was able to send some messages to the 

Linux system over the zigbee link to cause problems for the bridge? 

 

 There is a file at /home/swupdate/certs/enc.k, which you can use “hexdump” to see 

contains 32-bytes of data. This file is referenced from /usr/sbin/swupdate as being 

the AES-256-CBC key used in decrypting certain binary blobs during the SW update 

process. 

 

This key is constant across the two different Hue Bridges I looked at. This key, 

however, only decrypts some data store, that data store itself still has an encrypted 

firmware image for the Zigbee SoC inside it. 

 

 The binary ‘zigbee_soc_updater’ at /usr/sbin which appears to handle the bootloading 

process for the SoC. This may have additional information about the blob format, as 

it seems to reference both a HwId and a KeyId being encoded in the binary blob. 
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 The zigbee SoC firmware files themselves seem to be placed at /lib/firmware – again 

these are the encrypted SBL files, so this isn’t a huge attack. 

 

 Looking at two different devices, they appeared to have different root passwords. I’ve 

been told devices have unique root passwords per device, which is a definite win 

security-wise. 

FIRMWARE UPDATE – NETWORK PERSPECTIVE 

One of the first things I did was sniff the network traffic while performing a firmware 

update. This revealed a single binary blob was downloaded, called 

bsb002_image_01032318.fw2. This file once again appears to be encrypted, and unlike 

last time was not simply split into two files, where one is sent to the Zigbee SoC directly. 

None of the sequences sent to the SoC over the serial port appeared in this binary file at all. 

Having now looked at the swupdate binary, it’s clear this is because the encrypted Zigbee 

SoC firmware file is further encrypted inside the update image. The update image does 

have a signature present, and presumably, this is checked by the Bridge itself to avoid 

loading unsigned binaries. The combination of encryption & signing should stop an attacker 

from forcing someone to load a malicious binary. 

Unfortunately, as the encryption key used for the binary blob can be discovered easily, and 

appears to be consistent across bridge devices, the encryption adds little to the data 

security. This shouldn’t affect the signing operation, however, as the security of the signing 

operation is dependent on the private key held by Philips in a secure location. 

FIRMWARE UPDATE - SAMR21E18A BOOTLOADER 

Interestingly, the SAMR21E18A appears to use the same bootloader as the CC2530 device. 

Presumably Philips is trying to keep a minimum amount of variation between versions. In 

the following figures data sent TO the SAMR21E18A is on the lower line. 

We can see the sign-on command of FE 00 00 00 00 is answered with FE 05 00 80 00 

01 0A 00 6B E5. You’ll notice the spacing of the sent commands is “odd” – my assumption 

is this is related to the fact traffic is passing down the USB stack and through a USB-serial 
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converter. So for example on the Linux side they are calling a send() command with first 2 

bytes, and then 3 bytes. This gets split into separate USB transactions which adds some 

delay: 

 

There appears to be no pin bootstrap required, as was for the CC2530. Sending the sign-on 

command seems to result in the response without any pin changes after reset. 

Data is sent using the same format – FE 42 00 01 is a header, followed by two bytes of 

LSB, MSB packet number information, followed by 64 bytes of data, and a final FCS: 

 

The FCS is an XOR of all bytes starting at the length (i.e., NOT including the FE byte) until 

the last byte of the payload. 

If the package is accepted, the SAMR21E18A will respond with FE 01 00 81 00 80. 

 

Once the final packet is written (number D56, shown here): 

 

We can write FE 00 00 03 03 which starts the programmed image: 

 

After sending the start command, there is almost a 1-second delay before anything 

happens, shown below:. 
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This suggests that further processing may be occurring – the 18A has 256K of FLASH 

memory, which would be insufficient to be using half of it for temporarily storing the image 

(the image has approx. a 218 496 byte size, assuming that the encrypted image is the same 

size as the decrypted image). 

Instead, this delay may be verification of a signature, or it’s possible the decryption doesn’t 

happen until this time. Some possible answers can be found using power analysis of the 

bootloader. 

The lower 4 lines in the image showing the delay after receiving the go command are SPI 

pins. This traffic is consistent with a standard start-up, and an insignificant amount of data 

is read/written from SPI. I assume the SPI flash is completely unused for boot loading 

purposes. 

In my analysis, sending valid but unexpected data (i.e., random payloads but with correct 

FCS and address) sometimes resulted in the bootloader giving an invalid response (i.e., 

responded with something other than FE 01 00 81 00 80. 

There is assumed to be some underlying structure in the Zigbee SoC file. Further analysis 

of the zigbee_soc_updater file is needed to see if this can easily be discovered. For example, 

there are numerous references to a “HwId” being encoded in the file (as the 

zigbee_soc_updated checks the update file matches the version the hardware reports), and 

there is a referenced to a KeyID as well. 

Looking back at the response to the sign-on command, we see it has a reported payload 

length of 5. This suggests the payload is then 00 01 0A 00 6B. We find these same bytes 

as part of the header of the encrypted file: 
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This suggests that the sign-on command is providing information which is matched to the 

SoC firmware file. Unraveling the firmware update file is useful to determine where exactly 

the encryption is happening, as it then allows us to inject more useful packets (which forms 

the basis of an attack such as at http://wiki.newae.com/Tutorial_A5_Breaking_AES-

256_Bootloader ).  

The AES accelerator on the SAMR21E18A is much simpler, and in fact the AES hardware 

accelerator (which is part of the AT86RF233) I suspect to be breakable, since it’s likely the 

same peripheral used in the ATMega128RFA1 (which can be attacked, as I showed at 

https://eprint.iacr.org/2015/529.pdf ). This means that side-channel power analysis on the 

SAMR21E18A may be more successful than on the CC2530. 

These measurements were taken from the VDDCORE power supply, by inserting a resistor 

in-line with the VDDCORE pin and adding an external ~1.95V power supply. This power 

supply is designed to cause the internal 1.8V regulator to shut down, as it reduces the noise 

on the measurement using an external supply. 

Of interest I also took measurements of the VDD power supply, which is internally used by 

the RF233 core which has the AES peripheral. There appeared to be no unique power 

signatures beyond some spikes due to USART traffic. This would suggest that either (a) 

software encryption is being used, or (b) the power signature is much different than 

expected. 

The setup of the SAMR21E18A is slightly odd, that makes a software implementation more 

likely, even though it contains an AES hardware accelerator. The SAMR21E18A chip 

internally has a separate microcontroller + an AR86RF233 die connected via SPI: 

http://wiki.newae.com/Tutorial_A5_Breaking_AES-256_Bootloader
http://wiki.newae.com/Tutorial_A5_Breaking_AES-256_Bootloader
https://eprint.iacr.org/2015/529.pdf
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 This means using the AES accelerator has performance limits, since you need to transfer 

data to/from it via SPI first. In addition, the AES accelerator only supports a limited 

number of modes (AES-ECB, and AES-CBC encryption) since they are the only ones 

required by IEEE 802.15.4. It may have been easier to use a software implementation to 

support the mode required by the bootloader. 

It’s also possible that (a) the algorithm is not AES-128, or (b) the actual decryption occurs 

during that 1-second delay. The latter seems somewhat unlikely as the page write time 

alone is 2.5 mS, and with 64-byte pages this means the firmware update spans 3400 pages. 

This would take much longer than 1s to write if so – I think instead it’s verifying the 

complete firmware image, and only if a signature matches does it flag the image as valid. 



Colin O’Flynn               

 

30 

 

Looking at the power signature after the first 64-byte packet is sent is as follows, where the 

red bar on the left indicates the end of the TX serial data, and the red bar on the right 

indicates the start of the RX serial data: 

 

Several interesting features are allowed. There is various processing that appears to occur, 

as well as around 4 “groups” of 10 peaks. This 10-peak group may be some form of 

encryption (i.e., AES-128 which has ten rounds?).  

We can get a slightly more reliable signal using the ChipWhisperer capture instead – this 

concentrates on the first 3.5 divisions in the above image. We can see the 10-round 

sequence at sample points approximately 2800 to 6500, and starting to repeat again around 

78000: 

 

Again the processing is very clear here, although the specific algorithm is still unknown.  
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The following figures have a time scale of 800uS/div (note this covers 2x as much time as 

the above scale). 

After Packet #2, #3, #4, #5 respectively: 

 

 

 

 

The processing seems to be done in two groups (each group is assumed to be 64) bytes. It’s 

possible the variable delay between them is due to a page write and/or part of a row erase 

finishing. 

A brief test for AES-128 leakage was unsuccessful, but more time may be needed to 

determine this. In addition this test would only work for AES-128 decryption in CBC mode. 

Knowing more about the type of the firmware encryption would be useful in concentrating 

this attack. 

It’s possible the first group is decrypting the firmware, and the next group is calculating 

some signature using the same algorithm (but with a different key). 

It would also be useful to characterize the leakage on the SAMR21E18A device, for example 

loading a test program that performs a row erase & page write to see if this provide unique 
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signatures. If these could be matched to the above images, it would give a better idea about 

the bootloader process. 

But it can be seen that a suitable power signature can be recorded from the bootloader on 

the SAMR21E18A device. More work is required to determine what protection against 

power analysis might be built into this bootloader. 

For these examples, a generic target board was used which had the main bridge board 

mounted onto it: 

 

The CLK-IN point shown earlier was driven via a 1K resistor. This resistor caused the 

crystal on the board to become phase-locked with an external clock. If performing clock 

glitching, the crystal on the board would be removed and the clock input would be driven 

with a stronger source. 

For testing the above waveforms with expected programs on a SAMR21E18A, an Atmel 

SAMR21 Xplained Pro board was used, which was instrumented in a similar fashion to 

allow measurements on the VDDCORE supply: 
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Running the Atmel-provided AES examples (which are included in the examples under the 

SAMD21 Xplained Pro board, and can be copied over to this board easily) gives some idea of 

the expected power signatures when decrypting 64-bytes of data using different AES 

modes: 

AES-128 in ECB Decryption: 

AES-128 in CBC Decryption: 

AES-128 in CTR encryption/decryption (same operation): 
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Visual inspection reveals a very close match to the observed waveforms, in particular for 

the AES-CTR mode. Using AES-CTR mode is another good security practice that 

complicates a basic side-channel analysis attack. 

Performing an attack against AES-CTR mode requires some additional work (detailed in 

https://www.iacr.org/archive/ches2007/47270001/47270001.pdf) but still remains possible, 

and as can be seen here further work may reveal the keying material used for the ZigBee 

SoC firmware update. 

6 COLOR BR30 BULBS 

The color BR30 bulbs are an older design, and of particular interest as they are the only 

ones as of this whitepaper that have an over-the-air (OTA) firmware update. This means it 

is possible to learn a little about the bootloading process here. A photo of the light (being 

cut open) is shown below: 

 

Inside this device, there is a CC2530 (same as on the Bridge V1.0) as shown below: 

https://www.iacr.org/archive/ches2007/47270001/47270001.pdf
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Using the bulb board outside of the bulb requires two small PCB modifications: 

1) There is a temperature sensor (small surface-mount part) on the LED board, which 

is soldered onto the 6-pin header. If this sensor is not soldered, the board will shut 

down as it believes it is in an over-temperature situation (referred to as NTC in the 

below figure). 

 

2) Power is applied (+3.3V) via the 3-pin header. Both of these are shown below: 
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There is again a serial port accessible at TP114. This allows monitoring of messages from 

the CC2530 device, and uses the same basic protocol as previously discussed.  

 

FIRMWARE UPDATE INFORMATION 

The firmware updates are downloaded Over The Air (OTA). The firmware file itself can be 

downloaded from a fixed URL, and contains an encrypted firmware file (similar to the 

firmware update for the CC2530 device). 

The firmware update has the filename ConnectedLamp-Target_0012_13452_8D.sbl-ota. 

This data is transmitted over the air, and written into the SPI flash on the BR30 bulb. 

On start-up, the CC2530 checks this SPI flash. It appears that byte at address 0x0004 acts as a flag – if 

programmed to value 0xFF it causes the device to bootload. This is useful as it can be used in trying to 

load new firmware files without needing to perform an OTA update (which takes a fair amount of time 

to download the new file). 

The start of the SPI flash in the BR30 is shown here. Note it starts “SBL1”, again finding reference to the 

‘Serial Boot Loader’ from TI.  

 

The bootloader reads through the flash twice. The first time is verifying the signature (to 

confirm a valid file is available), the second time it actually does the programming. 

This is done to avoid discovering after programming that the signature is invalid, which 

would leave the light bricked. The bulb is assumed to also verify the signature of the data 

once written into the internal flash memory before becoming active. 

We can see the first run-through is done as a straight pass: 
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Notice the second pass (starting around 62s) has some “gaps.” These gaps are highlighted 

here: 

 

These gaps are the page erase being performed. This is how we know the actual write is 

occurring at this time. Zooming in within one block, we see that 16 bytes are read from the 

SPI flash at a time: 

 

This would again suggest that perhaps AES-128 is being used to encrypt the firmware file. 

This would agree with the existence of an AES-128 hardware module inside the CC2530. 

We can use the previous “erase flash but read SRAM” bug to dig a little more. To do this, we 

need a more fine-grained control of the erase process. To start with, we consider what is in 

the SPI flash, as shown here: 

 

The “2A”… is the actual OTA firmware file, the same as downloaded from the URL. 

SIDE-TRACK: BRIDGE 1.0 SERIAL PORT 

In addition we can look back to the Bridge 1.0 serial port, and see where the encrypted 

firmware file is sent over the serial port to the Zigbee SoC. 

The following is part of the log of data sent from the STM32 to the Zigbee SoC: 
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[Zcl,S,S=0x0004.11,768,0071000100004002400300040007000800,64] 

[Zcl,S,S=0x0004.11,25,1902059700000000000000009001,64] 

[Zcl,S,S=0x0004.11,25,190305000b1000018c340042000000002b1ef1ee0b000138

0000000b1000018c340042020000000000000000000000000000000000000000000000

00,64] 

[Zcl,S,S=0x0004.11,25,190405000b1000018c3400422b0000002b00000000000000

0000b8ef03002a00010000665214100217303903ef402e370b25ecc04765cbe11e0e74

f7,64] 

[Zcl,S,S=0x0002.11,6,0072000000,64] 

[Zcl,S,S=0x0004.11,25,190505000b1000018c340042560000002ba114ee6b58b52f

f30d83681267714c7a75204d08e0749554ceab23722b80ab4646cd77cfac2e8c589e75

8c,64] 

The data in red (starting 2a…) can be seen to lie at SPI flash hex address 7C0 to 7DD. The 

next group in green can be seen to be the data from 7DE to 808. The encrypted firmware 

data is sent as-is over the serial port, which transmits them as ZLL messages. The ZLL 

messages if inspected in wireshark will be encrypted by the (unknown) link key. 

We now return back to the SRAM dump attack. 

DUMPING SRAM 

To perform the SRAM dump, it requires a special firmware which enters debug based on an 

external trigger. In this case an oscilloscope was used to generate a trigger based on SPI 

data, which corresponds to a certain part of the SPI flash being read. 

Once this data is read out, the debug mode is entered. Debug mode halts the CPU, and 

allows us to perform the chip erase and then read the SRAM out. The following shows the 

timing of the SPI data with the reset pulse: 
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A delay has been added from the SPI data to the debug mode to allow time for processing to 

occur. The following shows some annotations on the dumped SRAM memory after the first 

16 bytes were read from the SPI flash: 

 

We can easily see where the RX buffer is located. There is not a clear TX buffer however, 

making the glitch attack more difficult. This is likely due to the fact the SPI bootloader may 

use “hard-coded” calls to the transmit function per byte. 
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Performing this attack erases the bulb, making it useless. Thus it’s desired to avoid 

performing this attack often due to the cost of the BR30 bulbs. 

A write/erase second attack should be performed during the “decryption” phase of the 

algorithm. While the SRAM dump above has clear information of interest, we may find 

more by looking at a SRAM dump during the decryption phase and not the signature 

verification phase. 

At this stage I’ve run out of working BR30 bulbs, and due to the relatively high cost of them 

decided to look into other areas. 

7 LOW-COST WHITE BULBS 

The newer white bulbs are available at very low cost ($15 CAD!). They make an interesting 

development platform due to the very low cost. 

The low-cost white bulbs are shown here: 

 

The top part can be taken off by cutting around the seal: 
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The bulb being taken apart is shown in the following photos: 
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Removing the top heatsink requires careful scrapping of the silicon sealant, along with 

removing the very tight fit of the top metal plate. Unfortunately, the test points cannot be 

easily accessed without removing this plate. 

Further taking apart the device by stripping the outside case shows a potting compound of 

some sort:  

 

 

The core processor is an Atmel ATMega2564RFR2. The test points present allow JTAG 

programming of this device (detailed later). 

The bulb can again be powered up using an external 3.3V supply. There is both a TX and 

RX available – this uses the same sort of format as the rest of the serial ports within the 

Hue system(s). The RX is pin TP112, and TX is TP111. 
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Looking at the strings printed on start-up, we can see the lock bits are set correctly. The 

following shows the start-up message printed over the serial port (my emphasis added): 

[Log,Info,ConnectedLamp,MCUCR=0x00,LockBits=0xFC,LowFuse=0xF6,HighFuse

=0x9A,ExtFuse=0xFE] 

[Log,Info,ConnectedLamp,devsig=0x1EA803] 

[Log,Info,S_DeviceInfo,Booting into normal mode...] 

[Log,Info,S_DeviceInfo,DeviceId: Bulb_A19_DimmableWhite_v2] 

[Log,Info,N_Security,LIB4.5.75] 

[Log,Info,N_Security,KeyBitMask,0x0012] 

[Log,Info,ConnectedLamp,Platform version 0.41.0.1,package_ZigBee 

117,package_BC_Stack 104,svn 26632] 

[Log,Info,ConnectedLamp,Product version WhiteLamp-Atmel 

5.38.1.15095,built by LouvreZLL] 

[Log,Info,A_Commissioning,Factory New at Ch: 11] 

[TH,Ready,0] 

We can send other messages over the serial port. For example to get the software version 

we can send the GetSwVersion command (which was found by looking at strings in the 

ipbridge binary): 

[TH,GetSwVersion] 

[TH,GetSwVersion,0,WhiteLamp-Atmel-Target,0x0012,5.38.1.15095] 
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Messages must be followed with a ‘\r’, the serial port can be changed to use this setting 

normally. Sending a newline alone or newline+carriage return (‘\n\r’) will result in an 

error. 

The availability of an active serial port is potentially of great interest – this could give rise 

to being susceptible to glitch attacks, or potential buffer overflows. 

Using the printed data, we can also guess what the underlying stack might be. For example 

here are two lines in the log message: 

[Log,Info,N_Connection,Starting discovery for updated networks] 

[Log,Info,N_Connection,Discovery for updated networks completed] 

This is the same message as printed by Atmel’s ZLL BitCloud stack: 

 

We can also do things like short the SPI lines low – this results in error messages which are 

very consistent with those expected to be printed by the BitCloud stack. 

This would suggest there is multiple underlying stacks present – this adds additional 

chances for bugs to enter, as there may be errors in the Atmel stack not present in the TI 

stack. 
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Also, knowing the stack allows us to understand the external SPI flash memory. For 

example looking at the source code we expect the string “S_XNv2” as described in the 

comments: 

 

A dump of the SPI flash shows this exact string being present: 

 

The SPI flash, however, seems to contain only information on the ZigBee network 

configuration, and nothing of great interest such as keys or firmware. 

Until an OTA update is released for the Atmel-based bulbs, it’s hard to know exactly how 

the update process works. I assume it’s similar to the CC2530 device (copies data to SPI 

flash, then bootloads from SPI flash). 

TEST POINT CONNECTIONS 

The test points on this board allow reprogramming of the ATMega2564RFR2 using a JTAG 

programmer. The location of test points is as such: 

 TP104 = 3.3V IN 

 TP105 = GND 

 TP100 = RSTN 
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 TP109 = TCK 

 TP110 = TMS 

 TP113 = TDO 

 TP114 = TDI 

While soldering wires to these test-points requires removal of the LED board / heat-sink 

assembly, it should be possible to design a small PCB-jig that can press against these test 

points, and is inserted from the top without removing the LED board / heat-sink assembly. 

This would make it possible to re-use the low-cost white Hue LEDs as a generic 

development platform for those doing wireless sensor network (WSN) research. 

FUSE INFORMATION 

I also verified the fuse/lock-bits were set correctly by reading them with JTAG, beyond 

what was printed on the console at boot (in case that was incorrect). This confirms the 

system jumps to a fairly small bootloader – 2K words [4K bytes] of FLASH is reserved for 

the bootloader, the chip allows reserving up to 4K words of FLASH: 

 

The security fuses do prevent program read-out. Interestingly, as first pointed out to me by 

Eyal Ronen, there are no locks on the bootloader section to prevent read-out by application 

code. The AVR has lock bits that can be set to prevent such read-out, but they are not used 

here: 

 

Leaving the bootloader unlocked was likely done as another engineering trade-off, as by 

leaving the bootloader unlocked Philips can update the bootloader itself in a future 

firmware upgrade. 
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The disadvantage from a security perspective is that if an alternate method of loading code 

is found (for example – the bootloader has a flag to allow unencrypted binaries to be loaded, 

etc.), we could then load a program to read the bootloader out and determine the secret 

encryption keys. 

Note the AVR’s architecture prevents a basic glitch attack from working to read the 

bootloader section out. As the AVR is a Harvard architecture, the data and code memory is 

separate. Loading data from code memory requires special instructions, thus glitching some 

arbitrary transmit loop cannot result in code memory dumps. 

8 CONCLUSIONS 

A lightbulb worm doesn’t exist today, but the “makings” of such a worm seem to exist in the 

architecture of any smart-lighting system. These systems involved wireless connections, 

where the very simple devices have limited ability to know what network they should join. 

An attacker can thus find ways to cause devices to switch networks, and if the device can be 

reflashed once under their control, a worm is trivial to generate from this arrangement. 

The specific ZigBee Light Link (ZLL) implementation in Philips Hue takes a number of 

precautions to reduce the risk of this happening – using encrypted firmware updates for 

example to stop arbitrary code from being flashed, and using unique root passwords to 

hopefully stop someone from logging into the Bridge devices en-masse to attack the network 

from the Ethernet side. 

Some engineering trade-offs were made that have the potential to cause serious problems. 

It appears all bulbs of the same type use the same encryption key for the firmware image, 

and if that key leaks it may be difficult to securely change the key. Realistically, such trade-

offs are simply part of any product design and it’s difficult to call them “good” or bad” 

design. 

This paper has outlined various methods that might be used in further analysis of the 

system. Examples of glitch attacks to dump SRAM, alongside power analysis to determine 

where data processing occurred within the bootloader was demonstrated. Finally, an 

example of how to get a root console on the newer Bridge 2.0 devices was presented, which 

will be useful in performing further analysis of the binaries on these devices. 

Readers interested in learning more about what sort of leakage can happen with a lightbulb 

attack, and then looking at how they can be applied, are encouraged to see Eyal Ronen’s 

current and future publications (http://www.wisdom.weizmann.ac.il/~eyalro/). 

  

http://www.wisdom.weizmann.ac.il/~eyalro/
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