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 Abstract—As interconnected devices proliferate, security of 

those devices becomes more important. Two critical attacks can 

bypass many standard security mechanisms. These attacks are 

broadly known as side-channel attacks & fault injection attacks. 

This paper will introduce side-channel power analysis and fault 

injection attacks and their relevance to embedded systems. 

Examples of attacks are given, along with a short discussion of 

countermeasures and effectiveness. The use of open-source tools 

is highlighted, allowing the reader the chance to better 

understand these attacks with hands-on examples. 

 

I. INTRODUCTION 

Side-channel attacks are the broad class given to attacks 
which rely on “additional information” that is accidently 
leaked. A variety of such side-channels exist, such as the time 
an algorithm takes to execute can betray information about the 
code paths taken in the algorithm. Of great interest to 
embedded developers is side channel power analysis, first 
introduced by Kocher et al. in 1999 [1]. This attack takes 
advantage of a small piece of information – the data being 
processed by a system affects the power consumption of that 
system. This allows us to break advanced cryptography 
systems such as recovering an AES-256 key in a matter of 
minutes. These attacks do not rely on substantial resources – 
they can be performed with commodity hardware and for less 
than $50. A second class of attack will be known as fault 
injection attacks. They allow us to modify the program flow of 
code, which can cause a variety of security flaws to be 
exploited. This paper will briefly introduce those two methods 
of attacks and discuss how engineers can understand them to 
develop effective countermeasures. 

II. POWER ANALYSIS FOR ALGORITHM FLOW 

The most basic form of power analysis attack is simple 
power analysis. In this method we will extract information 
about the algorithm flow. This could be used to directly 
extract key bits where changes in program flows reveal key 
information (such as with RSA), but can also be used to 
extract information such as timing that simplifies further 
attacks. Observe a simple password check which checks a byte 
of the password at a time. The execution time through this 
algorithm would reveal which password byte was incorrect, 
allowing an attacker the ability to quickly brute-force the 
algorithm. A password of ADBC would entail only the guess 
sequence “A/A..B..C..D/A..B../A..B…C” to find the correct 

password, as once the correct letter is found for one digit the 
guess algorithm can move onto the next digit. 

Such an attack could be performed from the 
communications protocol. But many systems will add a 
random delay before returning the results. With power 
analysis we could see the unique signatures in the power trace, 
as in Figure 1. 

Fig. 1. A simple password check shows how many iterations through the 

loop we took. 

These power measurement examples are taken with the 
ChipWhisperer project. Here the power measurements are 
done by inserting a shunt resistor into the device power pin, 
and using the fact that a change in current will cause a change 
in voltage across the resistor. The decoupling capacitors are 
removed in this example to provide a clean signal. This is 
shown in Figure 2. 

Fig. 2. The ChipWhisperer-Lite Platform is used for Power Analysis and 

Fault injection. 

 



 

 

 

Note that using an EM probe could also provide a useful 
signal. An EM probe takes advantage of the fact a changing 
current through the device generates a changing EM signature, 
allowing the power analysis to succeed without requiring 
changes to the circuit board. 

III. POWER ANALYSIS FOR DATA EXTRACTION 

Besides understanding program flow, we can also directly 
extract data on internal busses. This allows recovery of keying 
material for algorithms such as AES-128. This works by 
taking advantage of the fact that changing the internal data bus 
is equivalent to charging or discharging a capacitor. Setting 
two data bits on the bus to ‘1’ takes more power than setting 
one data bit on the bus to ‘1’. This is not just a theoretical 
consideration – Figure 3 shows the power usage of a device 
processing data with differing Hamming weights (HW). These 
measurements were performed on a real hardware platform 
(ChipWhiperer-Lite), and is something you can easily confirm 
yourself. 

Fig. 3. Average power trace for differing Hamming Weight (HW) of data 

moving across internal data bus.  

We don’t even claim to need knowledge of the exact 
Hamming weight. We look for just the linear relationship 
between a Hamming weight and the power consumption, as 
you can see in Figure 4 where I’ve plotted the value of sample 
point 978 for various Hamming weights. Note that there is a 
very strong linear relationship, and this linear relationship 
exists only when the correct data-point was chosen. 

Fig. 4. Correlation of Hamming weight and power consumption.  

How does this help us break cryptography? Consider the 
full AES algorithm, shown in Figure 5. A byte of the secret 
key is XOR’d with a byte of the input data (AddRoundKey 
operation), and passed through a substitution box (SubBytes 
operation). This is repeated for each of the successive bytes. 
Note that despite the large key size of AES, this operation 
occurs a single byte at a time. We can take advantage of the 
correlation between the Hamming weight at the output of the 
S-Box and power usage of the device by trying to find this 
linear relationship in the power trace. 

Fig. 5. The full AES algorithm starts with an XOR of the Key 

(AddRoundKey) before performing a lookup table operation. 

Rather than having known data and plotting it to find the 
exact location of this linear relationship, we look for any point 
in the power trace showing that linear relationship. The only 
way this linear relationship would exist is if our data was the 
actual data processed on the hardware – that means both the 
secret key and input data we use to calculate the Hamming 
weights are the actual ones processed by the device. Since we 
could assume we know the input data, we have to only 
perform a guess of a single byte at a time of the secret key. 
This allows recovery of the secret key in a very short period of 
time, assuming no protections are present on the device. 

IV. FAULT INJECTION ATTACKS 

Fault injection attacks allow one to bypass security 
mechanisms. The most basic example would be to consider an 
authentication check. If one could bypass that check, there 
would be no need to break the cryptography at all. This would 
allows us to trick the system into loading the incorrect data, as 
the signature verification step is completely ignored. 

Fault injection typically allows us to achieve this. There 
are many ways of performing it, the most common are clock 
glitching, voltage glitching, and electromagnetic fault 
injection (EMFI). 

Clock glitching relies on inserting very narrow clock edges 
near the “actual” clock edge (see Figure 6). These clock edges 
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cause setup & hold times to be violated internally, which 
allows incorrect data to be propagated through the system. The 
exact effect varies based on timing, but for example this could 
cause an instruction load to be skipped, an instruction to be 
changed into another instruction, incorrect data to be saved, or 
register flags to not be written.  

Voltage glitching inserts waveforms into the power supply 
of the target. These could be generated using very simple 
methods, such as shorting the power pins together for very 
short periods of times (nS to uS). More complex faults could 
be achieved using a waveform generator and amplifier for 
example, or an analog multiplexor to switch between two or 
more voltage levels. 

Fig. 6. A glitchy clock inserts a clock edge into the regular clock at a fixed 

distance from the edge. 

Finally electromagnetic glitching uses a strong current 
introduced into a coil near the target device. This causes 
voltages to be induced in the target device, and can cause 
similar effects to the previous fault injection methods. In 
addition, this can corrupt directly SRAM data, and not just 
change the state of dynamic data in-flight. 

V. EMFI THROUGH THE ENCLOSURE 

An interesting application of EMFI is that it can be 
performed through the enclosure of the device. Consider the 
Trezor bitcoin wallet for example. It contains a STM32F205 
microcontroller located ~1mm below the surface of the device. 
This allows EMFI to target the device without opening the 
enclosure, as in Figure 7. One critical piece of information 
stored inside the flash memory of this chip is the “recovery 
seed”, and knowledge of that seed would allow someone to 
recover the data stored within it. 

Fig. 7. The ChipSHOUTER EMFI platform is used to inject a fault directly 

through the enclosure of the Trezor wallet. 

We can use FI to cause the data to be returned to us on 
demand. This takes advantage of the implementation of how a 
USB control read is performed for reading some of the USB 
descriptors. The critical section of the code is shown in Figure 
8. A user requests a specific descriptor, and as part of the USB 
standard the user requests an expect number of bytes. The 
USB stack then returns up to requested number of bytes, but 
can return less if the requested data structure is smaller. The 
data structure in question for this code is 146 bytes, but we 
could freely request up to 0xFFFF bytes. The Trezor will not 
return 0xFFFF bytes as the data structure is only 146 bytes, so 
no exploit exists. But we can use FI to inject a fault at the 
moment the length comparison is done, and cause the wallet to 
return the full 0xFFFF bytes. In this case critical security data 
lies in flash memory after the descriptors, allowing us to easily 
read out this critical data. 

Fig. 8. The MIN() macro call can be glitched to always return the incorrect 

*len result, which comes from a user-supplied value. 

The location of the fault injection requires some search and 
a degree of luck. The processing of the USB command is not 
time-definite due to jitter resulting from the queue. But the 
result of this is that a single successful glitch can cause a 
successful dump of the recovery information. A low success 
rate is meaningless if we can perform thousands of tries 
relatively quickly, as is the case for this specific device. 

VI. COUNTER-MEASURES AND SECURE DESIGN 

A variety of techniques are available to reduce the impact 
of the attacks outlined here. Blindly applying the techniques is 
insufficient to guarantee successful countermeasures, as many 
platform and device specific implementation details can 
impact their effectiveness. The first step in developing secure 
systems must be to understand how the attacks work, so you 
can validate countermeasures. 

A. Instrumentation Setup 

Setup of an instrumented environment is the first step in 
applying countermeasures. While it may be possible to 
instrument your exact end product, you may find it easier to 
instrument a development board or even use special-purpose 
hardware for this. The open-source ChipWhisperer project 
contains a variety of example targets using various 
microcontrollers and FPGAs for example. An example setup is 
shown in Figure 2. 

This instrumented setup represents the “worst case” for 
performing analysis of your product. In this setup the attack 
has debug access, knowledge of code, and ability to easily 



perform power measurements or fault injection attacks. While 
such level of access may be unrealistic, it provides an upper 
bound on your security solution. 

If the unprotected AES implementation can be broken in 
30 seconds using the instrumented setup, you should not have 
high confidence in the overall usefulness of it. 

B. Side Channel Countermeasures 

The most useful side-channel countermeasure is to avoid 
including sensitive information that could be leaked. The reuse 
of a symmetric key across all your products is a prime 
example of a perfect target for side-channel analysis. Use of 
key derivation, or unique keys based on something like a 
physically unclonable function (PUF) would make side-
channel analysis have limited applicability. 

The actual cryptographic implementations vary in side-
channel resistance as well. Use of implementations with 
proven side-channel resistance can be another option. Be wary 
of “claimed” side-channel resistance without any validation 
done, as many libraries where designers have implemented 
untested countermeasures have proven to have heavy side-
channel leaks at a future time. 

C. Fault Injection Countermeasures 

Fault injection countermeasures involve several areas. 
First, many devices have error detection circuitry that can be 
enabled. Ensuring exceptions on clock instability and memory 
corruption get caught and logged can be useful in reducing an 
attack success rate. 

The use of multiple checks complicates many fault 
injection attacks. Rather than performing a simple basic 
comparison, one can perform the comparison multiple times. 
This comparison should have a default “safe” option – for 
example rather than comparing for a “true” value in C, one 
should compare for a specific flag. Comparing to a “true” 
value in C is highly vulnerable to fault injection, since any 

corruption of that register that results in a non-zero value 
being loaded will result in a successful attack. 

Prevention of memory dump attacks has multiple 
solutions. The simple Trezor attack demonstrated earlier could 
have been prevented in several ways. First, the maximum 
transfer the lower-level USB stack supports could have been 
limited. The control endpoint never needed to transfer such 
large information back, so a mask could have been applied to 
limit the return data size to 256 bytes or similar. Since the 
attacker did not have control over the starting location of the 
dump, the information dumped would have been limited. 

Another protection against memory dumping would have 
been to use the memory management/protection unit 
(depending on device), and have “trap” memory sections. 
These traps exist around sensitive data, or at least after 
sections of data returned to a user. A buffer over-read will run 
into a trap, and trigger this protection. 

VII. CONCLUSIONS 

Embedded system designers need to carefully consider 
advanced attacks such as side-channel power analysis and 
fault injection. These attacks are practical and a designer of a 
secure system can expect them to be used against their system. 
The availability of open-source tools including hardware and 
software leaves no reason for developers to ignore these 
attacks, as they can easily instrument their designs to perform 
the attacks on them. 
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