
www.embedded-world.eu

Breaking Security: Power Analysis & Fault Injection Attacks

Colin O’Flynn

 C.T.O Assistant Professor

 NewAE Technology Inc. Dalhousie University

Halifax, NS, Canada. Halifax, NS, Canada.

 Abstract—As interconnected devices proliferate, security of

those devices becomes more important. Two critical attacks can

bypass many standard security mechanisms. These attacks are

broadly known as side-channel attacks & fault injection attacks.

This paper will introduce side-channel power analysis and fault

injection attacks and their relevance to embedded systems.

Examples of attacks are given, along with a short discussion of

countermeasures and effectiveness. The use of open-source tools

is highlighted, allowing the reader the chance to better

understand these attacks with hands-on examples.

I. INTRODUCTION

Side-channel attacks are the broad class given to attacks
which rely on “additional information” that is accidently
leaked. A variety of such side-channels exist, such as the time
an algorithm takes to execute can betray information about the
code paths taken in the algorithm. Of great interest to
embedded developers is side channel power analysis, first
introduced by Kocher et al. in 1999 [1]. This attack takes
advantage of a small piece of information – the data being
processed by a system affects the power consumption of that
system. This allows us to break advanced cryptography
systems such as recovering an AES-256 key in a matter of
minutes. These attacks do not rely on substantial resources –
they can be performed with commodity hardware and for less
than $50. A second class of attack will be known as fault
injection attacks. They allow us to modify the program flow of
code, which can cause a variety of security flaws to be
exploited. This paper will briefly introduce those two methods
of attacks and discuss how engineers can understand them to
develop effective countermeasures.

II. POWER ANALYSIS FOR ALGORITHM FLOW

The most basic form of power analysis attack is simple
power analysis. In this method we will extract information
about the algorithm flow. This could be used to directly
extract key bits where changes in program flows reveal key
information (such as with RSA), but can also be used to
extract information such as timing that simplifies further
attacks. Observe a simple password check which checks a byte
of the password at a time. The execution time through this
algorithm would reveal which password byte was incorrect,
allowing an attacker the ability to quickly brute-force the
algorithm. A password of ADBC would entail only the guess
sequence “A/A..B..C..D/A..B../A..B…C” to find the correct

password, as once the correct letter is found for one digit the
guess algorithm can move onto the next digit.

Such an attack could be performed from the
communications protocol. But many systems will add a
random delay before returning the results. With power
analysis we could see the unique signatures in the power trace,
as in Figure 1.

Fig. 1. A simple password check shows how many iterations through the

loop we took.

These power measurement examples are taken with the
ChipWhisperer project. Here the power measurements are
done by inserting a shunt resistor into the device power pin,
and using the fact that a change in current will cause a change
in voltage across the resistor. The decoupling capacitors are
removed in this example to provide a clean signal. This is
shown in Figure 2.

Fig. 2. The ChipWhisperer-Lite Platform is used for Power Analysis and

Fault injection.

Note that using an EM probe could also provide a useful
signal. An EM probe takes advantage of the fact a changing
current through the device generates a changing EM signature,
allowing the power analysis to succeed without requiring
changes to the circuit board.

III. POWER ANALYSIS FOR DATA EXTRACTION

Besides understanding program flow, we can also directly
extract data on internal busses. This allows recovery of keying
material for algorithms such as AES-128. This works by
taking advantage of the fact that changing the internal data bus
is equivalent to charging or discharging a capacitor. Setting
two data bits on the bus to ‘1’ takes more power than setting
one data bit on the bus to ‘1’. This is not just a theoretical
consideration – Figure 3 shows the power usage of a device
processing data with differing Hamming weights (HW). These
measurements were performed on a real hardware platform
(ChipWhiperer-Lite), and is something you can easily confirm
yourself.

Fig. 3. Average power trace for differing Hamming Weight (HW) of data

moving across internal data bus.

We don’t even claim to need knowledge of the exact
Hamming weight. We look for just the linear relationship
between a Hamming weight and the power consumption, as
you can see in Figure 4 where I’ve plotted the value of sample
point 978 for various Hamming weights. Note that there is a
very strong linear relationship, and this linear relationship
exists only when the correct data-point was chosen.

Fig. 4. Correlation of Hamming weight and power consumption.

How does this help us break cryptography? Consider the
full AES algorithm, shown in Figure 5. A byte of the secret
key is XOR’d with a byte of the input data (AddRoundKey
operation), and passed through a substitution box (SubBytes
operation). This is repeated for each of the successive bytes.
Note that despite the large key size of AES, this operation
occurs a single byte at a time. We can take advantage of the
correlation between the Hamming weight at the output of the
S-Box and power usage of the device by trying to find this
linear relationship in the power trace.

Fig. 5. The full AES algorithm starts with an XOR of the Key

(AddRoundKey) before performing a lookup table operation.

Rather than having known data and plotting it to find the
exact location of this linear relationship, we look for any point
in the power trace showing that linear relationship. The only
way this linear relationship would exist is if our data was the
actual data processed on the hardware – that means both the
secret key and input data we use to calculate the Hamming
weights are the actual ones processed by the device. Since we
could assume we know the input data, we have to only
perform a guess of a single byte at a time of the secret key.
This allows recovery of the secret key in a very short period of
time, assuming no protections are present on the device.

IV. FAULT INJECTION ATTACKS

Fault injection attacks allow one to bypass security
mechanisms. The most basic example would be to consider an
authentication check. If one could bypass that check, there
would be no need to break the cryptography at all. This would
allows us to trick the system into loading the incorrect data, as
the signature verification step is completely ignored.

Fault injection typically allows us to achieve this. There
are many ways of performing it, the most common are clock
glitching, voltage glitching, and electromagnetic fault
injection (EMFI).

Clock glitching relies on inserting very narrow clock edges
near the “actual” clock edge (see Figure 6). These clock edges

www.embedded-world.eu

cause setup & hold times to be violated internally, which
allows incorrect data to be propagated through the system. The
exact effect varies based on timing, but for example this could
cause an instruction load to be skipped, an instruction to be
changed into another instruction, incorrect data to be saved, or
register flags to not be written.

Voltage glitching inserts waveforms into the power supply
of the target. These could be generated using very simple
methods, such as shorting the power pins together for very
short periods of times (nS to uS). More complex faults could
be achieved using a waveform generator and amplifier for
example, or an analog multiplexor to switch between two or
more voltage levels.

Fig. 6. A glitchy clock inserts a clock edge into the regular clock at a fixed

distance from the edge.

Finally electromagnetic glitching uses a strong current
introduced into a coil near the target device. This causes
voltages to be induced in the target device, and can cause
similar effects to the previous fault injection methods. In
addition, this can corrupt directly SRAM data, and not just
change the state of dynamic data in-flight.

V. EMFI THROUGH THE ENCLOSURE

An interesting application of EMFI is that it can be
performed through the enclosure of the device. Consider the
Trezor bitcoin wallet for example. It contains a STM32F205
microcontroller located ~1mm below the surface of the device.
This allows EMFI to target the device without opening the
enclosure, as in Figure 7. One critical piece of information
stored inside the flash memory of this chip is the “recovery
seed”, and knowledge of that seed would allow someone to
recover the data stored within it.

Fig. 7. The ChipSHOUTER EMFI platform is used to inject a fault directly

through the enclosure of the Trezor wallet.

We can use FI to cause the data to be returned to us on
demand. This takes advantage of the implementation of how a
USB control read is performed for reading some of the USB
descriptors. The critical section of the code is shown in Figure
8. A user requests a specific descriptor, and as part of the USB
standard the user requests an expect number of bytes. The
USB stack then returns up to requested number of bytes, but
can return less if the requested data structure is smaller. The
data structure in question for this code is 146 bytes, but we
could freely request up to 0xFFFF bytes. The Trezor will not
return 0xFFFF bytes as the data structure is only 146 bytes, so
no exploit exists. But we can use FI to inject a fault at the
moment the length comparison is done, and cause the wallet to
return the full 0xFFFF bytes. In this case critical security data
lies in flash memory after the descriptors, allowing us to easily
read out this critical data.

Fig. 8. The MIN() macro call can be glitched to always return the incorrect

*len result, which comes from a user-supplied value.

The location of the fault injection requires some search and
a degree of luck. The processing of the USB command is not
time-definite due to jitter resulting from the queue. But the
result of this is that a single successful glitch can cause a
successful dump of the recovery information. A low success
rate is meaningless if we can perform thousands of tries
relatively quickly, as is the case for this specific device.

VI. COUNTER-MEASURES AND SECURE DESIGN

A variety of techniques are available to reduce the impact
of the attacks outlined here. Blindly applying the techniques is
insufficient to guarantee successful countermeasures, as many
platform and device specific implementation details can
impact their effectiveness. The first step in developing secure
systems must be to understand how the attacks work, so you
can validate countermeasures.

A. Instrumentation Setup

Setup of an instrumented environment is the first step in
applying countermeasures. While it may be possible to
instrument your exact end product, you may find it easier to
instrument a development board or even use special-purpose
hardware for this. The open-source ChipWhisperer project
contains a variety of example targets using various
microcontrollers and FPGAs for example. An example setup is
shown in Figure 2.

This instrumented setup represents the “worst case” for
performing analysis of your product. In this setup the attack
has debug access, knowledge of code, and ability to easily

perform power measurements or fault injection attacks. While
such level of access may be unrealistic, it provides an upper
bound on your security solution.

If the unprotected AES implementation can be broken in
30 seconds using the instrumented setup, you should not have
high confidence in the overall usefulness of it.

B. Side Channel Countermeasures

The most useful side-channel countermeasure is to avoid
including sensitive information that could be leaked. The reuse
of a symmetric key across all your products is a prime
example of a perfect target for side-channel analysis. Use of
key derivation, or unique keys based on something like a
physically unclonable function (PUF) would make side-
channel analysis have limited applicability.

The actual cryptographic implementations vary in side-
channel resistance as well. Use of implementations with
proven side-channel resistance can be another option. Be wary
of “claimed” side-channel resistance without any validation
done, as many libraries where designers have implemented
untested countermeasures have proven to have heavy side-
channel leaks at a future time.

C. Fault Injection Countermeasures

Fault injection countermeasures involve several areas.
First, many devices have error detection circuitry that can be
enabled. Ensuring exceptions on clock instability and memory
corruption get caught and logged can be useful in reducing an
attack success rate.

The use of multiple checks complicates many fault
injection attacks. Rather than performing a simple basic
comparison, one can perform the comparison multiple times.
This comparison should have a default “safe” option – for
example rather than comparing for a “true” value in C, one
should compare for a specific flag. Comparing to a “true”
value in C is highly vulnerable to fault injection, since any

corruption of that register that results in a non-zero value
being loaded will result in a successful attack.

Prevention of memory dump attacks has multiple
solutions. The simple Trezor attack demonstrated earlier could
have been prevented in several ways. First, the maximum
transfer the lower-level USB stack supports could have been
limited. The control endpoint never needed to transfer such
large information back, so a mask could have been applied to
limit the return data size to 256 bytes or similar. Since the
attacker did not have control over the starting location of the
dump, the information dumped would have been limited.

Another protection against memory dumping would have
been to use the memory management/protection unit
(depending on device), and have “trap” memory sections.
These traps exist around sensitive data, or at least after
sections of data returned to a user. A buffer over-read will run
into a trap, and trigger this protection.

VII. CONCLUSIONS

Embedded system designers need to carefully consider
advanced attacks such as side-channel power analysis and
fault injection. These attacks are practical and a designer of a
secure system can expect them to be used against their system.
The availability of open-source tools including hardware and
software leaves no reason for developers to ignore these
attacks, as they can easily instrument their designs to perform
the attacks on them.

VIII. REFERENCES

[1] Kocher, P. C., Jaffe, J., & Jun, B. (1999). Differential power analysis.
Lecture Notes in Computer Science, 388-397

[2] Brier E., Clavier C., Olivier F. (2004) Correlation Power Analysis with a
Leakage Model. In: Joye M., Quisquater JJ. (eds) Cryptographic
Hardware and Embedded Systems - CHES 2004.

