Hands on with Non-
Invasive Hardware
Security Tooling

Colin O’Flynn
New England Hardware Security Day 2022

About Me & This Talk

« Started ChipWhisperer project
« Power analysis, fault injection, including hardware & software.

The Hardware

Hﬂﬂkiﬂg Handbook e Variety of open-source & not tools

* Breaking Embedded Security « Now a company supporting 6 people — with some local connection
o with Hardware Attacks o R

coming soon (Cambridge/Boston area), if you are looking for
work please get in touch!

« Was assistant professor at Dalhousie University (now adjunct to do
ChipWhisperer stuff full-time instead)

Jasnewanw_uude:iberé,a;lﬂ .Ilﬂltinll'Flynn * (Co-author of “The Hardware Hacking Handbook” alongside Jasper

Van Woudenberg

* Published with No Starch Press (physical book Nov / 2021)

Links to material on blog post at oflynn.com

Topics 1n this demo-focused talk

- Fault injection on Raspberry P1 3 Model B+:

- Faulting RSA signing operation to recover private key
- EMFI

- RISC-V Soft Core

- KCC / FPGA Attacks

Fault Injection on

Raspb |
na pberry P1 3 Model

Objective: DFA on RSA (from Python!)

R-P1 as Target & Platform

pi@raspberrypi: ~

WESCOEREN + g
New

Load
test.py X ‘

| import RPi.GPIO as GPIO
» from Crypto.Signature import PKCS1 vl 5

$ @ pi Th Thonny - /home/pi/t..

Thonny - /home/pi/testpy @ 71:1

O B O ® €

Run Debug Stop Zoom Qu

from Crypto.Hash import SHA256 VV) 3

from Crypto.PublicKey import RSA e re gO]-ng to run
» from binascii import hexlify, unhexlify
o import gmpy2 some Python code on a
/ from gmpy2 import mpz | .
9 from tqdm import tqdm Raspberry P]. MOde]. 8
0]
1 message = b'Hello World' B+.

]

1

l key = RSA.importKey(open('test.key').read())
I3 h = SHA256.new(message)
]

|

1

1

|

print("Loaded SECRET KEY:")
6 print(" SECRET KNOWN p: {}".format(key. key['p'
7 ['q

1))
print(" SECRET KNOWN q: {}".format(key. key['q']))

R-P1 as Target & Platform

We're going to inject
faults into a Raspberry
P1 Model B 3+

R-P1 as Target & Platform

File Edit Tabs Help
0420895023661639019862379495017645342037849044552993181579153946523138430957
1531401
|/home/pi/test.py:20: RuntimeWarning: This channel is already in use, continu
anyway. Use GPIO.setwarnings(False) to disable warnings.

GPIO.setup(18, GPIO.OUT)
90it [00:02, 40.91it/s]Segmentation fault
pi@raspberrypi: python test.py
Loaded SECRET KEY:

SECRET KNOWN p: 1788107990298414946671967110934214587143749134127334670831 , .
36849123042008869216 5985742675702264935591014320723665337337364594593189 \A]e:fe g(nllg'to CITlSllfi
5426194549782361944: 3138986472648544¢ 760581514957368381732096873188 :
54261945497823619441 9864726485449 7605815149573683817320968731 Raspberry Pl MOdel B

49320639960165205015 382014833619235366660782099460518722814218677

2484399 +
SECRET KNOWN q: 1525233919984401138266712359184211726799434776074544683725 3

6962992737838645557814780634407331711145095262404962808185168935226577111189

4851442900723066606393548273284332009648923418389843103328117385347056908523

0420895023661639019862379495017645342037849044552993181579153946523138430957

1531401

/home/pi/test.py:20: RuntimeWarning: This channel is already in use, continu

lanyway. Use GPIO.setwarnings(False) to disable warnings.

| GPIO.setup(18, GPIO.OUT)

19251t [00:22, 40.75it/s]free(): invalid pointer

Aborted

We
inject
faults into
the R-Pi.

a R-Pi
to control |
the test.

crash {
“ M the R-Pi. |

L

u‘q

We
crash |
the R-Pi. }

My Code for R-P1

¥ master + remoticon-2021-levelup-hardware-hacking / rpi-glitching /

a colinoflynn Add the rpi demos

Running this code.

[README.md Add the rpi demos
9 cw-vglitch.py Add the rpi demos
Y glitchloop.c
Y rsaglitch.py Add the rpi demos
[testkey Add the rpi demos
‘= README.md

Rasperry Pi Glitching Examples

https://github.com/colinoflynn/remoticon-2021-levelup-hardware-hacking/tree/master/rpi-glitching

W (V¥ J
h S -

w
~J

Follow Along with Co-Lab / Python

These are example faulty

while True: outputs — if you uncomment
GPIO.output(18, GPIO.LOW) this code acts as if you
GPIO.output(18, GPIO.HIGH) received such a faulty
output = p.sign(h) output!

GPIO.output(18, GPIO.LOW)

See 1f you can get the p/q
#output = b'\x93\x07\xcO\xB2\xc9\x85\n\xb31lY\xad\xb4dhY\» recovery. If SO you can run
xc9\xa0\x14\x0f\xad\xd3\xb2\x9dK\x15\xe7Zg| this yourself.

"
-
-]

Foutput

WATCH ENVIRONMENT SETUP: Need specific version of pycryptodome!

The issue is fixed in any recent version.

Cheap EMFI Tooling

Initial “Safe” Version

\ / O o

LTS A o 4
o PRy 4 e
0 > B it e

Hackaday Remoticon 2021

https://github.com/colinoflynn/remoticon-2021-levelup-hardware-hacking/tree/master/dangerous-emfi

PicoEMP

ChipSHOUTER®-PicoEMP www.picoemp.com
Designed by Colin O'Flynn. Bult by You

ot smsakoil f bchar ko bl 2 e g s o LR e

DMI-IE-IWI.TNEEMSHD

USE OHLY AFTER COMBULTMD FULL FRODUCT DOCLMENTATEM AT WrsPOOihe oo
THE FRODUCT 5 FRCVDED “AS 57, WITHOUT WSRRANTY OF AT BM0L

3 4
“Sw3 should be 4.6t 5. 2mm | £ A
high. If too high will hit shield. SW3 2'9
If too low will be hard to press. I ©
Pn here fits well. [?—
e s we — BG306-02-A-2-0400-L-G
Vee TL3301 AF160Q7
¢ oL Rl
2k 615 A L A
CHARGED i c K % S0M
E INC [—
LDA111STR; 2
00K
GND
=
D1,D3,D4,D5 generic Schottky diodes, SOD123FL footprint. Part number B
changes depending on build. Use HV rating for better safety factor. 1
D2
Tl 2 N L 1 / o
1 > Vi [
q MURAL60T3G K
S
B | 38 L, inwi
., ¢ 3 0.474F,630V.X7T EDGE-SMA
ATB322524
D4 —1Q3 Q2
vCC HVPWM N — TAOC3422 = JRGT16BMESDTL
1! C1 =C2
SM4005PL-T: 5 TuF/50V WTuE/ S0V A
k
D3 L
= DANGER: HIGH
GND
SM4005PL-TP VAQILILETY
=
Q3 & Q4: C
PMV37ENEAR used in final build
due to supply chain issues.
vl 2 IR
1 ie TR
. i q 9 D7
1 M 4 ' MM3Z18VB
TOR 3
ATB322524
D5 |‘|: Q4 ==Cs
HVPULSE N —_TAO3422 100n ISOLATION BARRIER, 400V MIN.
W >1MM CLEARANCEPER 61010-1 14,
SMA4005PL-TP 10 Half of Hammond
1551BTRD used for shield. If
unavailable 3D print shield.
L I
= Plastic Shield - 1551BTRD
GND D
Tite: High Voltage Circuitry S Approved: YES #
Rev: 04 ‘ Praject: PicoEMP . License: CC BY-SA 3.
Date: 2021-12-16 Time: 8:53:16PM__ | Sheet]l of 2 Copyright © NewAE Technology Inc. | NewAE.com
File: chipshouter-pico-hv.SchDoc Copyright (C) Colin O'Flynn, 2021
1 2 3 4

RISC-V Soft-Core
Attack

NEO Processor

NEORV32 CPU U RISC-y: Risey onchip
@@@@@[Zfinx][Szl] Cumplef[EDCD}

[Zicsr || Zicntr || Zihpm || Zifencei | PMP |

| Zmmul || Zxcfu (custom instructions) | e
BUS MUX BUS KEEPER SYSINFO CLK & RST
L XIRQ L GPTMR L\ CFS XIP
L TwWi DMEM IMEM £\ UARTO
GPIO BOOTLDROM iCACHE L\ UART1
PWM L MTIME TRNG &SPl

L\ SLINK L\ woT WISHBONE £\ NEOLED

émﬁ@@.ﬁ

bl L

LYATILz9Z60

M g = = . ‘1‘. 3 %
v & A T e a0 .
. /;/;y
: NN\
. R
& & N %

6:

Eicy

f] om N
(%)
mn 5 m m_ Amu....
ICE40UPSK WLCSP Target . N
For ChipWhisperer CW312 N\ 74
\ '3
™ rs

Example — Simple AES Attack

Rebuilding your RISC-V Core

: Slack histogram:
Tegend: * represents 21 endpoint(s)
+ represents [1,21) endpoint(s)

39029, 41053) |*+
41053, 43077)
43077, 45101)
45101, 47125)
47125, 49149)
49149, 51173)
51173, 53197)
53197, 55221)
55221, 57245)
57245, 59269)
59269, 61293)
61293, 63317)
63317, 65341)
65341, 67365)
67365, 69389)
69389, 71413)
71413, 73437)
73437, 75461)
75461, 77485)
77485, 79509)

6 warnings, 0 errors

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Info: Program finished normally.
icepack neorv32_iCE40Ccw312_MinimalBoot.asc neorv32_iCE40Cw312_MinimalBoot.bit
make[3]: Leaving directory '/c/dev/neorv32-setups/osflow’
IMPL="${BITSTREAM%%.*}"; for item in ".bit" ".svf"; do \
it [-f "./$IMPLSitem”]; then \
mv "./$IMPLSitem” ./; \
i\

Leaving directory '/c/dev/neorv32-setups/osflow’
Leaving directory '/c/dev/neorv32-setups/osflow’

Rebuilding your Firmware

Creating load file for EEPROM: simpleserial-aes-CW308 NEORV32.eep

riscv32-unknown-elf-objcopy -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-1ma .eeprom=0@ --no-change-warnings -0 ihex simpleserial-aes-CW308 NEORV32.elf simy
ORV32.eep || exit @

Creating Extended Listing: simpleserial-aes-CW308 NEORV32.l1ss
riscv32-unknown-elf-objdump -h -S -z simpleserial-aes-CW308 NEORV32.elf > simpleserial-aes-CW308 N

Creating Symbol Table: simpleserial-aes-CW3©8 NEORV32.sym
riscv32-unknown-elf-nm -n simpleserial-aes-CW308 NEORV32.elf > simpleserial-aes-CW308 NEORV32.sym
Size after:

text data bss dec hex filename

5784 272 5696 11752 2de8 simpleserial-aes-CW308 NEORV32.elf

Default target does full rebuild each time.
Specify buildtarget == allquick == to avoid full rebuild

Built for platform iCE40 Target with neorv softcore with:
CRYPTO_TARGET = TINYAES128C
CRYPTO_OPTIONS = AES128C

What can you do?

- Change the code.
- Change the core parameters.
- Add custom core instructions.

- Totally open source!

FPGA ECC Attack

About ECC FPGA Attacks

A

/

If attacker knows this == very bad.

<

\/

You know it’s ECC because I used this figure.

How bad 1s 1t to know this?

iPhone hacker publishes secret Sony
PlayStation 3 key

By Jonathan Fildes
Technology reporter, BBC News

© 6 January 2011

F

Steal your games.

https://www.bbc.com/news/
technology-12116051

Figure 3: Google Titan Security Key PCB, with NxP A7005a o
die visible after wet chemical attack of its package P

Hardl Figure 4: EM Probe Positions on Titan (left) and Rhea (right)

u some. We had to find a workaround to study the of low

prove ¢
implementation in a more convenient setting. level .
with t 100 .
50
o

: m
100
0.001 1.000e+8 2.000e+8 3.000e+8 4.000e+8

0e+0

e

Amplit

Time (Samples)

Figure 5: Tiran ECDSA Signature EM Trace

Steal your auth tokens.

https://www.usenix.org/conference/usenixsecurity21/pre
sentation/roche

01+

Hih-Level Setup

1@

,Dau.uya 'JG‘;‘@

0.1

(3] ﬁufmideg@ i

smejg @

(Agg)
4365y, 1)

10413 i@

A’I'SHH?JE)JBG’SWM diyy

JODQUUO 3 uy
'JaJadS-“JM-dlﬁ

o
i

0.2

T
1000

https://github.com/newaetech/chipwhisperer-jupvter/blob/master/demos/CW305 ECC

https://github.com/newaetech/chipwhisperer-jupyter/blob/master/demos/CW305_ECC

Following Along

Ark of the ECC

An open-source ECDSA power analysis attack on a FPGA
based Curve P-256 implementation

Jean-Pierre Thibault', Colin O’Flynn'?, and Alex Dewar®

! NewAE Technology Inc, Canada
2 Dalhousie University, Canada
{jpthibault,coflynn,adewar}@newae. con

Abstract. Power analysis attacks on ECC have been presented since
almost the very beginning of DPA itself, even before the standardization
of AES. Given that power analysis attacks against AES are well known
and have a large body of practical artifacts to demonstrate attacks on
both software and hardware implementations, it is surprising that these
artifacts are generally lacking for ECC. In this work we begin to remedy
this by providing a complete open-source ECDSA attack artifact, based
on a high-quality hardware ECDSA core from the CrypTech project. We
demonstrate an effective power analysis attack against an FPGA imple-
mentation of this core. As many recent secure boot solutions are using
ECDSA, efforts into building open-source artifacts to evaluate attacks on
ECDSA are highly relevant to ongoing academic and industrial research
programs. To demonstrate the value of this evaluation platform, we im-
plement several countermeasures and show that evaluating leakage on
hardware is critical to understand the effectiveness of a countermeasure.

Keywords: power analysis - ECDSA - FPGA evaluation

1 Introduction

Side-channel power analysis attacks against cryptographic implementations are
well-known in practice, starting with their seminal introduction in 1999 [16].
Since then, a considerable amount of work has been focused on symmetric al-
gorithms, and in particular AES. Power analysis against AES has been demon-
strated in real-life examples of software and hardware [21,22,28.18,25.8,32] at-
tacks, and a reader can refer to widely available material such as published
books [20], training courses, community driven tutorials such as part of the

Detailed write-up:
https://eprint.iacr.org/2021/1520.pdf

: Jupyter CW305_ECC_part1 Last Checkpoint: 8 hours ago (autosaved) A Lo

File Edit View Insert Cell Kemel Widgets Help Not Trusted | Pytho

+ 2 A B A ¥ PR B C W Code v @

Capturing traces: 100% (I /1 [00:00<00:00, 3.07it's]

Buidling the Attack: Trace Analysis

In the following, we build up the attack from scratch. In this way, while we are developing an attack which is very specific to our target, we show the methods
you would use to build an attack for a different target.

Let's start by looking at a single trace. Let's start with the first 20k cycles only (you can plot the full trace but that will be very slow because it's a long trace!).

In [15]: M from bokeh.plotting import figure, show
from bokeh.resources import INLINE
from bokeh.io import output_notebook
output_notebook (INLINE)

3 BokehJS 2.3.1 successfully loaded.

In [16]: M p = figure(plot_width=2000)
samples = 20000
#samples = Len(traces[0].wave)

xrange = range(samples)
p.line(xrange, traces[0].wave[:samples], line_color="red")

o HMMH WMMH

Full notebooks:

out[16]: GlyphRenderer(id ='1037', ...)

In [17]: M show(p)

01

https://github.com/newaetech/chipwhisperer-

jupvter/blob/master/demos/CW305 ECC

https://github.com/newaetech/chipwhisperer-jupyter/blob/master/demos/CW305_ECC
https://eprint.iacr.org/2021/1520.pdf

More Stutt

Follow me on Twitter: Send me an e-mail:

@colinoflynn coflynn@newae.com

Occasional blog posts:

www.oflynn.com

Updates on new tools & tutorials:
www.newae.com (subscribe to newsletter)

www.chipwhisperer.com

	Hands on with Non-Invasive Hardware Security Tooling
	About Me & This Talk
	Topics in this demo-focused talk
	Fault Injection on Raspberry Pi 3 Model B+
	Objective: DFA on RSA (from Python!)
	R-Pi as Target & Platform
	R-Pi as Target & Platform
	R-Pi as Target & Platform
	Slide Number 9
	My Code for R-Pi
	Follow Along with Co-Lab / Python
	Cheap EMFI Tooling
	Initial “Safe” Version
	PicoEMP
	Slide Number 15
	RISC-V Soft-Core Attack
	Slide Number 17
	Slide Number 18
	Example – Simple AES Attack
	Rebuilding your RISC-V Core
	Rebuilding your Firmware
	What can you do?
	FPGA ECC Attack
	About ECC FPGA Attacks
	How bad is it to know this?
	High-Level Setup
	Following Along
	More Stuff

